263 research outputs found

    Quantum Brachistochrone for Mixed States

    Full text link
    We present a general formalism based on the variational principle for finding the time-optimal quantum evolution of mixed states governed by a master equation, when the Hamiltonian and the Lindblad operators are subject to certain constraints. The problem reduces to solving first a fundamental equation (the {\it quantum brachistochrone}) for the Hamiltonian, which can be written down once the constraints are specified, and then solving the constraints and the master equation for the Lindblad and the density operators. As an application of our formalism, we study a simple one-qubit model where the optimal Lindblad operators control decoherence and can be simulated by a tunable coupling with an ancillary qubit. It is found that the evolution through mixed states can be more efficient than the unitary evolution between given pure states. We also discuss the mixed state evolution as a finite time unitary evolution of the system plus an environment followed by a single measurement. For the simplest choice of the constraints, the optimal duration time for the evolution is an exponentially decreasing function of the environment's degrees of freedom.Comment: 8 pages, 3 figure

    Measurement by FIB on the ISS: Two Emissions of Solar Neutrons Detected?

    Get PDF
    A new type of solar neutron detector (FIB) was launched onboard the Space Shuttle Endeavour on July 16, 2009, and it began collecting data at the International Space Station (ISS) on August 25, 2009. This paper summarizes the three years of observations obtained by the solar neutron detector FIB until the end of July 2012. The solar neutron detector FIB can determine both the energy and arrival direction of neutrons. We measured the energy spectra of background neutrons over the SAA region and elsewhere, and found the typical trigger rates to be 20 counts/sec and 0.22 counts/sec, respectively. It is possible to identify solar neutrons to within a level of 0.028 counts/sec, provided that directional information is applied. Solar neutrons were observed in association with the M-class solar flares that occurred on March 7 (M3.7) and June 7 (M2.5) of 2011. This marked the first time that neutrons were observed in M-class solar flares. A possible interpretaion of the prodcution process is provided.Comment: 36 pages, 16 figures, and 3 Tables; Advanced in Astronmy, 2012, Special issue on Cosmic Ray Variablity:Century of Its Obseravtion

    Water release and homogenization by dynamic recrystallization of quartz

    Get PDF
    To evaluate changes in water distribution generated by dynamic recrystallization of quartz, we performed infrared (IR) spectroscopy mapping of quartz in deformed granite from the Wariyama uplift zone in NE Japan. We analyzed three granite samples with different degrees of deformation: almost undeformed, weakly deformed, and strongly deformed. Dynamically recrystallized quartz grains with a grain size of ∼10 µm are found in these three samples, but the percentages of recrystallized grains and the recrystallization processes are different. Quartz in the almost-undeformed sample shows wavy grain boundaries, with a few bulged quartz grains. In the weakly deformed sample, bulging of quartz, which consumed adjacent host quartz grains, forms regions of a few hundred micrometers. In the strongly deformed sample, almost all quartz grains are recrystallized by subgrain rotation. IR spectra of quartz in the three samples commonly show a broad water band owing to H2O fluid at 2800–3750 cm−1, with no structural OH bands. Water contents in host quartz grains in the almost-undeformed sample are in the range of 40–1750 wt ppm, with a mean of 500±280 wt ppm H2O. On the other hand, water contents in regions of recrystallized grains, regardless of the recrystallization processes involved, are in the range of 100–510 wt ppm, with a mean of 220±70 wt ppm; these values are low and homogeneous compared with the contents in host quartz grains. These low water contents in recrystallized regions also contrast with those of up to 1540 wt ppm in adjacent host grains in the weakly deformed sample. Water contents in regions of subgrains are intermediate between those in host and recrystallized grains. These results for water distribution in quartz imply that water was released by dynamic recrystallization.</p

    Pedagogical and conceptual models acting on nursing education planning: a bibliographic review

    Get PDF
    Este trabalho busca identificar, em cinco períodos da História do Brasil, o uso, pelos enfermeiros, de metodologias pedagógicas nas ações educativas de saúde em enfermagem. Esta revisão procura resgatar a historicidade do processo educativo trilhado pela Enfermagem e propõe a incorporação, no planejamento das práticas educativas do enfermeiro, do uso de metodologias pedagógicas problematizadoras, concordando com os enfermeiros pesquisadores e assistenciais que defendem aplicação de ações educativas que permitam ao aprendiz apropriar-se de conhecimento técnico aliado à conscientização política de si e do mundo, permitindo-lhe criar e recriar ações cotidianas.This paper looks historically and critically at the pedagogical and conceptual models using by nurses during five cycles of Brazilian. History in nursing education. This article examines the patterns of nursing education while this historical time and suggests to include pedagogic models based on problem solving in nursing health practice

    Time-optimal CNOT between indirectly coupled qubits in a linear Ising chain

    Full text link
    We give analytical solutions for the time-optimal synthesis of entangling gates between indirectly coupled qubits 1 and 3 in a linear spin chain of three qubits subject to an Ising Hamiltonian interaction with equal coupling JJ plus a local magnetic field acting on the intermediate qubit. The energy available is fixed, but we relax the standard assumption of instantaneous unitary operations acting on single qubits. The time required for performing an entangling gate which is equivalent, modulo local unitary operations, to the CNOT(1,3)\mathrm{CNOT}(1, 3) between the indirectly coupled qubits 1 and 3 is T=3/2J1T=\sqrt{3/2} J^{-1}, i.e. faster than a previous estimate based on a similar Hamiltonian and the assumption of local unitaries with zero time cost. Furthermore, performing a simple Walsh-Hadamard rotation in the Hlibert space of qubit 3 shows that the time-optimal synthesis of the CNOT±(1,3)\mathrm{CNOT}^{\pm}(1, 3) (which acts as the identity when the control qubit 1 is in the state 0\ket{0}, while if the control qubit is in the state 1\ket{1} the target qubit 3 is flipped as ±\ket{\pm}\rightarrow \ket{\mp}) also requires the same time TT.Comment: 9 pages; minor modification
    corecore