1,081 research outputs found
ALKALI-RICH FRAGMENTS IN LL-CHONDRITIC BRECCIAS.
第2回極域科学シンポジウム/第34回南極隕石シンポジウム 11月17日(木) 国立国語研究所 2階講
Lattice simulations of real-time quantum fields
We investigate lattice simulations of scalar and nonabelian gauge fields in
Minkowski space-time. For SU(2) gauge-theory expectation values of link
variables in 3+1 dimensions are constructed by a stochastic process in an
additional (5th) ``Langevin-time''. A sufficiently small Langevin step size and
the use of a tilted real-time contour leads to converging results in general.
All fixed point solutions are shown to fulfil the infinite hierarchy of
Dyson-Schwinger identities, however, they are not unique without further
constraints. For the nonabelian gauge theory the thermal equilibrium fixed
point is only approached at intermediate Langevin-times. It becomes more stable
if the complex time path is deformed towards Euclidean space-time. We analyze
this behavior further using the real-time evolution of a quantum anharmonic
oscillator, which is alternatively solved by diagonalizing its Hamiltonian.
Without further optimization stochastic quantization can give accurate
descriptions if the real-time extend of the lattice is small on the scale of
the inverse temperature.Comment: 36 pages, 15 figures, Late
Simulating nonequilibrium quantum fields with stochastic quantization techniques
We present lattice simulations of nonequilibrium quantum fields in
Minkowskian space-time. Starting from a non-thermal initial state, the
real-time quantum ensemble in 3+1 dimensions is constructed by a stochastic
process in an additional (5th) ``Langevin-time''. For the example of a
self-interacting scalar field we show how to resolve apparent unstable Langevin
dynamics, and compare our quantum results with those obtained in classical
field theory. Such a direct simulation method is crucial for our understanding
of collision experiments of heavy nuclei or other nonequilibrium phenomena in
strongly coupled quantum many-body systems.Comment: 4 pages, 4 figures, PRL version, minor change
Identification of K-rich fragments in chondritic breccias using Imaging Plate (IP): an application to the planetary materials.
第2回極域科学シンポジウム/第34回南極隕石シンポジウム 11月17日(木) 国立国語研究所 2階講
Stabile Chlorine Isotope Study of Martian Shergottites and Nakhlites; Whole Rock and Acid Leachates and Residues
We have established a precise analytical technique for stable chlorine isotope measurements of tiny planetary materials by TIMS (Thermal Ionization Mass Spectrometry) [1], for which the results are basically consistent with the IRMS tech-nique (gas source mass spectrometry) [2,3,4]. We present here results for Martian shergottites and nakhlites; whole rocks, HNO3-leachates and residues, and discuss the chlorine isotope evolution of planetary Mars
Stable Chlorine Isotopes and Elemental Chlorine by Thermal Ionization Mass Spectrometry and Ion Chromatography; Martian Meteorites, Carbonaceous Chondrites and Standard Rocks
Recently significantly large mass fractionation of stable chlorine isotopes has been reported for terrestrial and lunar samples [1,2]. In addition, in view of possible early solar system processes [3] and also potential perchlorate-related fluid/microbial activities on the Martian surface [4,5], a large chlorine isotopic fractionation might be expected for some types of planetary materials. Due to analytical difficulties of isotopic and elemental analyses, however, current chlorine analyses for planetary materials are controversial among different laboratories, particularly between IRMS (gas source mass spectrometry) and TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1,6,7] for isotopic analyses, as well as between those doing pyrohydrolysis and other groups [i.e. 6,8]. Additional careful investigations of Cl isotope and elemental abundances are required to confirm real chlorine isotope and elemental variations for planetary materials. We have developed a TIMS technique combined with HF-leaching/ion chromatography at NASA JSC that is applicable to analysis of small amounts of meteoritic and planetary materials. We present here results for several standard rocks and meteorites, including Martian meteorites
Rb-Sr Isotopic Systematics of Alkalai-Rich Fragments in Yamato-74442 and Bhola
We have undertaken Rb.Sr isotopic studies on alkali-rich fragments in Bhola and Y-74442 to precisely deter-mine their crystallization ages and isotopic signatures of their precursor material(s)
Stable Chlorine Isotope Study: Application to Early Solar System Materials
A significantly large mass fractionation between two stable chlorine isotopes is expected during planetary processes In addition, in view of the isotopic heterogeneity of other light elements, the chlorine isotopes can potentially be used as a tracer for the origins and evolutionary processes of early solar system materials. Due to analytical difficulties, however, current chlorine isotope studies on planetary materials are quite controversial among IRMS (gas source mass spectrometry) and/or TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1-3]. Although a cross-calibration of IRMS and TIMS indicates that both techniques are sufficiently consistent with each other [4], some authors have claimed that the Cl-37/Cl-35 ratio of geological samples obtained by TIMS technique are, in general, misleadingly too high and variable compared to those of IRMS [3]. For example, almost no differences of Cl isotope composition were observed among mantle materials and carbonaceous meteorites by [3]. On the other hand, according to more recent IRMS work [2], significant Cl isotope variations are confirmed for mantle materials. Therefore, additional careful investigation of Cl isotope analyses are now required to confirm real chlorine isotope variations for planetary materials including carbonaceous chondrites [5]. A significantly large mass fractionation between two stable chlorine isotopes is expected during planetary processes In addition, in view of the isotopic heterogeneity of other light elements, the chlorine isotopes can potentially be used as a tracer for the origins and evolutionary processes of early solar system materials. Due to analytical difficulties, however, current chlorine isotope studies on planetary materials are quite controversial among IRMS (gas source mass spectrometry) and/or TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1-3]. Although a cross-calibration of IRMS and TIMS indicates that both techniques are sufficiently consistent with each other [4], some authors have claimed that the 37Cl/35Cl ratio of geological samples obtained by TIMS technique are, in general, misleadingly too high and variable compared to those of IRMS [3]. For eample, almost no differences of Cl isotope composition were observed among mantle materials and carbonaceous meteorites by [3]. On the other hand, according to more recent IRMS work [2], significant Cl isotope variations are confirmed for mantle materials. Therefore, additional careful investigation of Cl isotope analyses are now required to confirm real chlorine isotope variations for planetary materials including carbonaceous chondrites [5]. In order to clarify the stable chlorine isotope features of early solar system materials, we have initiated development of the TIMS technique at NASA JSC applicable to analysis of small amounts of meteoritic and planetary materials. We report here the current status of chlorine isotope analysis at NASA JSC
Chlorine Isotopes: As a Possible Tracer of Fluid/Bio-Activities on Mars and a Progress Report on Chlorine Isotope Analysis by TIMs
Significantly large mass fractionations between chlorine isotopes (Cl-35, Cl-37) have been reported for terrestrial materials including both geological samples and laboratory materials. Also, the chlorine isotopic composition can be used as a tracer for early solar system processes. Moreover, chlorine is ubiquitous on the Martian surface. Typical chlorine abundances in Gusev soils are approx.0.5 %. The global surface average chlorine abundance also is approx.0.5 %. Striking variations among outcrop rocks at Meridiani were reported with some chlorine abundances as high as approx.2%. Characterizing conditions under which chlorine isotopic fractionation may occur is clearly of interest to planetary science. Thus, we have initiated development of a chlorine isotopic analysis technique using TIMS at NASA-JSC. We present here a progress report on the current status of development at JSC and discuss the possible application of chlorine isotopic analysis to Martian meteorites in a search for fluid- and possibly biological activity on Mars
Short-time dynamics in the 1D long-range Potts model
We present numerical investigations of the short-time dynamics at criticality
in the 1D Potts model with power-law decaying interactions of the form
1/r^{1+sigma}. The scaling properties of the magnetization, autocorrelation
function and time correlations of the magnetization are studied. The dynamical
critical exponents theta' and z are derived in the cases q=2 and q=3 for
several values of the parameter belonging to the nontrivial critical
regime.Comment: 8 pages, 8 figures, minor changes - several typos fixed, one
reference change
- …