63 research outputs found

    Kaposi's sarcoma herpesvirus-induced endothelial cell reprogramming supports viral persistence and contributes to Kaposi's sarcoma tumorigenesis

    Get PDF
    Kaposi's sarcoma (KS) is an endothelial tumor causally linked to Kaposi's sarcoma herpesvirus (KSHV) infection. At early stages of KS, inflammation and aberrant neoangiogenesis are predominant, while at late stages the disease is characterized by the proliferation of KSHV-infected spindle cells (SC). Since KSHV infection modifies the endothelial cell (EC) identity, the origin of SCs remains elusive. Yet, pieces of evidence indicate the lymphatic origin. KSHV-infected ECs display increased proliferative, angiogenic and migratory capacities which account for KS oncogenesis. Here we propose a model in which KSHV reprograms the EC identity, induces DNA damage and establishes a dysregulated gene expression program involving interplay of latent and lytic genes allowing continuous. reinfection of ECs attracted to the tumor by the secretion of virus-induced cellular factors.Peer reviewe

    An Approach to Study Melanoma Invasion and Crosstalk with Lymphatic Endothelial Cell Spheroids in 3D Using Immunofluorescence

    Get PDF
    Three-dimensional (3D) cell culture has allowed a deeper understanding of complex pathological and physiological processes, overcoming some of the limitations of 2D cell culture on plastic and avoiding the costs and ethical issues related to experiments involving animals. Here we describe a protocol to embed single melanoma cells alone or together with primary human lymphatic endothelial cells in a 3D crosslinked matrix, to investigate the invasion and molecular crosstalk between these two cell types, respectively. After fixation and staining with antibodies and fluorescent conjugates, phenotypic changes in both cell types can be specifically analyzed by confocal microscopy.Peer reviewe

    Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication Is Independent of Anaphase-Promoting Complex Activity

    Get PDF
    The anaphase-promoting complex, or cyclosome (APC/C), is a large E3 ubiquitin ligase composed of 14 subunits. The activity of APC/C oscillates during the cell cycle to ensure a timely transition through each phase by promoting the degradation of important cell cycle regulators. Of the human herpesviruses, cytomegalovirus (HCMV) and Epstein-Barr virus (EBV) both impair the activity of APC/C during their lytic replication cycle through virus-encoded protein kinases. Here, we addressed whether the oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV) deregulates the activity of APC/C during the lytic replication cycle. To this end, we used the well-characterized iSLK.219 cell model of KSHV infection and established a new infection model of primary lymphatic endothelial cells (LECs) infected with a lytically replicating KSHV BAC16 mutant. In contrast to those of EBV and HCMV, the KSHV lytic cycle occurs while the APC/C is active. Moreover, interfering with the activity of APC/C did not lead to major changes in the production of infectious virus. We further investigated whether rereplication stress induced by the unscheduled activation of the APC/C-CDH1 complex affects the number and integrity of KSHV viral episomes. Deep sequencing of the viral episomes and host chromosomes in iSLK.219 cells revealed that, while distinct regions in the cellular chromosomes were severely affected by rereplication stress, the integrity of the viral episomes remained unaltered. IMPORTANCE DNA viruses have evolved complex strategies to gain control over the cell cycle. Several of them target APC/C, a key cellular machinery that controls the timely progression of the cell cycle, by either blocking or enhancing its activity. Here, we investigated the activity of APC/C during the lytic replication cycle of KSHV and found that, in contrast to that of KSHV's close relatives EBV and HCMV, KSHV lytic replication occurs while the APC/C is active. Perturbing APC/C activity by depleting a core protein or the adaptor proteins of the catalytic domain, and hence interfering with normal cell-cycle progression, did not affect virus replication. This suggests that KSHV has evolved to replicate independently of the activity of APC/C and in various cell cycle conditions.Peer reviewe

    MMP14 in Sarcoma: A Regulator of Tumor Microenvironment Communication in Connective Tissues

    Get PDF
    Sarcomas are deadly malignant tumors of mesenchymal origin occurring at all ages. The expression and function of the membrane-type matrix metalloproteinase MMP14 is closely related to the mesenchymal cell phenotype, and it is highly expressed in most sarcomas. MMP14 regulates the activity of multiple extracellular and plasma membrane proteins, influencing cell–cell and cell–extracellular matrix (ECM) communication. This regulation mediates processes such as ECM degradation and remodeling, cell invasion, and cancer metastasis. Thus, a comprehensive understanding of the biology of MMP14 in sarcomas will shed light on the mechanisms controlling the key processes in these diseases. Here, we provide an overview of the function and regulation of MMP14 and we discuss their relationship with clinical and pre-clinical MMP14 data in both adult and childhood sarcomas

    Prevention of Gestational Diabetes: Design of a Cluster-Randomized Controlled Trial and One-Year Follow-Up

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Annual prevalence of gestational diabetes mellitus (GDM) is 12.5% among Finnish pregnant women. The prevalence is expected to rise with the increasing overweight among women before pregnancy. Physical activity and diet are both known to have favourable effects on insulin resistance and possibly on the risk of GDM. We aimed to investigate, whether GDM can be prevented by counseling on diet, physical activity and gestational weight gain during pregnancy.</p> <p>Methods/Design</p> <p>A cluster-randomized controlled trial was conducted in 14 municipalities in the southern part of Finland. Pairwise randomization was performed in order to take into account socioeconomic differences. Recruited women were at 8-12 weeks' gestation and fulfilled at least one of the following criteria: body mass index ≥ 25 kg/m<sup>2</sup>, history of earlier gestational glucose intolerance or macrosomic newborn (> 4500 g), age ≥ 40 years, first or second degree relative with history of type 1 or 2 diabetes. Main exclusion criterion was pathological oral glucose tolerance test (OGTT) at 8-12 weeks' gestation. The trial included one counseling session on physical activity at 8-12 weeks' gestation and one for diet at 16-18 weeks' gestation, and three to four booster sessions during other routine visits. In the control clinics women received usual care. Information on height, weight gain and other gestational factors was obtained from maternity cards. Physical activity, dietary intake and quality of life were followed by questionnaires during pregnancy and at 1-year postpartum. Blood samples for lipid status, hormones, insulin and OGTT were taken at 8-12 and 26-28 weeks' gestation and 1 year postpartum. Workability and return to work were elicited by a questionnaire at 1- year postpartum. Linkage to the national birth register of years 2007-2009 will provide information on perinatal complications and GDM incidence among the non-participants of the study. Cost-effectiveness evaluation will be based on quality-adjusted life years. This study has received ethical approval from the Ethical board of Pirkanmaa Hospital District.</p> <p>Discussion</p> <p>The study will provide information on the effectiveness and cost-effectiveness of gestational physical activity and dietary counseling on prevention of GDM in a risk group of women. Also information on the prevalence of GDM and postpartum metabolic syndrome will be gained. Results on maintaining the possible health behaviour changes are important in order to prevent chronic diseases such as cardiovascular disease and diabetes.</p> <p>Trial registration</p> <p>The trial is registered ISRCTN 33885819</p

    Kaposi’s Sarcoma-Associated Herpesvirus Reactivation by Targeting of a dCas9-Based Transcription Activator to the ORF50 Promoter

    Get PDF
    CRISPR activation (CRISPRa) has revealed great potential as a tool to modulate the expression of targeted cellular genes. Here, we successfully applied the CRISPRa system to trigger the Kaposi’s sarcoma-associated herpesvirus (KSHV) reactivation in latently infected cells by selectively activating ORF50 gene directly from the virus genome. We found that a nuclease-deficient Cas9 (dCas9) fused to a destabilization domain (DD) and 12 copies of the VP16 activation domain (VP192) triggered a more efficient KSHV lytic cycle and virus production when guided to two different sites on the ORF50 promoter, instead of only a single site. To our surprise, the virus reactivation induced by binding of the stable DD-dCas9-VP192 on the ORF50 promoter was even more efficient than reactivation induced by ectopic expression of ORF50. This suggests that recruitment of additional transcriptional activators to the ORF50 promoter, in addition to ORF50 itself, are needed for the efficient virus production. Further, we show that CRISPRa can be applied to selectively express the early lytic gene, ORF57, without disturbing the viral latency. Therefore, CRISPRa-based systems can be utilized to facilitate virus–host interaction studies by controlling the expression of not only cellular but also of specific KSHV genes

    KSHV infection of endothelial precursor cells with lymphatic characteristics as a novel model for translational Kaposi's sarcoma studies

    Get PDF
    Author summaryKaposi's sarcoma herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS). The main proliferative component of KS, spindle cells, express markers of lymphatic and blood endothelium. Endothelial precursor cells, which are circulating endothelial colony forming cells (ECFCs), have been proposed as the source of spindle cells. Here we examined both blood and lymphatic ECFCs infected with KSHV. Lymphatic ECFCs are readily infected by KSHV, maintain the viral episomes and show modest transformation of the cells, which the infected blood ECFCs and all uninfected ECFCs failed to show. The lymphatic ECFCs express SOX18, which supported the maintenance of high copy numbers of KSHV genomes. The KSHV-infected lymphatic ECFCs persisted in vivo and recapitulated the phenotype of KS tumor cells such as high number of viral genome copies and spindling morphology. These KS tumor cell hallmarks were significantly reduced by SOX18 chemical inhibition using a small molecule SM4 treatment. These data suggest that KSHV-infected lymphatic ECFCs could be the progenitors of KS spindle cells and are a promising model for the translational studies to develop new therapies for KS.Kaposi's sarcoma herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS), a hyperplasia consisting of enlarged malformed vasculature and spindle-shaped cells, the main proliferative component of KS. While spindle cells express markers of lymphatic and blood endothelium, the origin of spindle cells is unknown. Endothelial precursor cells have been proposed as the source of spindle cells. We previously identified two types of circulating endothelial colony forming cells (ECFCs), ones that expressed markers of blood endothelium and ones that expressed markers of lymphatic endothelium. Here we examined both blood and lymphatic ECFCs infected with KSHV. Lymphatic ECFCs are significantly more susceptible to KSHV infection than the blood ECFCs and maintain the viral episomes during passage in culture while the blood ECFCs lose the viral episome. Only the KSHV-infected lymphatic ECFCs (K-ECFCLY) grew to small multicellular colonies in soft agar whereas the infected blood ECFCs and all uninfected ECFCs failed to proliferate. The K-ECFCLYs express high levels of SOX18, which supported the maintenance of high copy number of KSHV genomes. When implanted subcutaneously into NSG mice, the K-ECFCLYs persisted in vivo and recapitulated the phenotype of KS tumor cells with high number of viral genome copies and spindling morphology. These spindle cell hallmarks were significantly reduced when mice were treated with SOX18 inhibitor, SM4. These data suggest that KSHV-infected lymphatic ECFCs can be utilized as a KSHV infection model for in vivo translational studies to test novel inhibitors representing potential treatment modalities for KS.Peer reviewe

    Kaposi’s Sarcoma-Associated Herpesvirus Reactivation by Targeting of a dCas9-Based Transcription Activator to the ORF50 Promoter

    Get PDF
    CRISPR activation (CRISPRa) has revealed great potential as a tool to modulate the expression of targeted cellular genes. Here, we successfully applied the CRISPRa system to trigger the Kaposi’s sarcoma-associated herpesvirus (KSHV) reactivation in latently infected cells by selectively activating ORF50 gene directly from the virus genome. We found that a nuclease-deficient Cas9 (dCas9) fused to a destabilization domain (DD) and 12 copies of the VP16 activation domain (VP192) triggered a more efficient KSHV lytic cycle and virus production when guided to two different sites on the ORF50 promoter, instead of only a single site. To our surprise, the virus reactivation induced by binding of the stable DD-dCas9-VP192 on the ORF50 promoter was even more efficient than reactivation induced by ectopic expression of ORF50. This suggests that recruitment of additional transcriptional activators to the ORF50 promoter, in addition to ORF50 itself, are needed for the efficient virus production. Further, we show that CRISPRa can be applied to selectively express the early lytic gene, ORF57, without disturbing the viral latency. Therefore, CRISPRa-based systems can be utilized to facilitate virus–host interaction studies by controlling the expression of not only cellular but also of specific KSHV genes

    HERQ-9 Is a New Multiplex PCR for Differentiation and Quantification of All Nine Human Herpesviruses

    Get PDF
    Infections with the nine human herpesviruses (HHVs) are globally prevalent and characterized by lifelong persistence. Reactivations can potentially manifest as life-threatening conditions for which the demonstration of viral DNA is essential. In the present study, we developed HERQ-9, a pan-HHV quantitative PCR designed in triplex reactions to differentiate and quantify each of the HHV-DNAs: (i) herpes simplex viruses 1 and 2 and varicella-zoster virus; (ii) Epstein-Barr virus, human cytomegalovirus, and Kaposi's sarcoma-associated herpesvirus; and (iii) HHV-6A, -6B, and -7. The method was validated with prequantified reference standards as well as with mucocutaneous swabs and cerebrospinal fluid, plasma, and tonsillar tissue samples. Our findings highlight the value of multiplexing in the diagnosis of many unsuspected, yet clinically relevant, herpesviruses. In addition, we report here frequent HHV-DNA co-occurrences in clinical samples, including some previously unknown. HERQ-9 exhibited high specificity and sensitivity (LOD95 of similar to 10 to similar to 17 copies/reaction), with a dynamic range of 10' to 10 6 copies/p.I. Moreover, it performed accurately in the coamplification of both high- and low-abundance targets in the same reaction. In conclusion, we demonstrated that HERQ-9 is suitable for the diagnosis of a plethora of herpesvirus-related diseases. Besides its significance to clinical management, the method is valuable for the assessment of hitherto-unexplored synergistic effects of herpesvirus coinfections. Furthermore, its high sensitivity enables studies on the human virome, often dealing with minute quantities of persisting HHVs. IMPORTANCE By adulthood, almost all humans become infected by at least one herpesvirus (HHV). The maladies inflicted by these microbes extend beyond the initial infection, as they remain inside our cells for life and can reactivate, causing severe diseases. The diagnosis of active infection by these ubiquitous pathogens includes the detection of DNA with sensitive and specific assays. We developed the first quantitative PCR assay (HERQ-9) designed to identify and quantify each of the nine human herpesviruses. The simultaneous detection of HHVs in the same sample is important since they may act together to induce life-threatening conditions. Moreover, the high sensitivity of our method is of extreme value for assessment of the effects of these viruses persisting in our body and their long-term consequences on our health.Peer reviewe
    • …
    corecore