368 research outputs found
Holistic Influence Maximization: Combining Scalability and Efficiency with Opinion-Aware Models
The steady growth of graph data from social networks has resulted in
wide-spread research in finding solutions to the influence maximization
problem. In this paper, we propose a holistic solution to the influence
maximization (IM) problem. (1) We introduce an opinion-cum-interaction (OI)
model that closely mirrors the real-world scenarios. Under the OI model, we
introduce a novel problem of Maximizing the Effective Opinion (MEO) of
influenced users. We prove that the MEO problem is NP-hard and cannot be
approximated within a constant ratio unless P=NP. (2) We propose a heuristic
algorithm OSIM to efficiently solve the MEO problem. To better explain the OSIM
heuristic, we first introduce EaSyIM - the opinion-oblivious version of OSIM, a
scalable algorithm capable of running within practical compute times on
commodity hardware. In addition to serving as a fundamental building block for
OSIM, EaSyIM is capable of addressing the scalability aspect - memory
consumption and running time, of the IM problem as well.
Empirically, our algorithms are capable of maintaining the deviation in the
spread always within 5% of the best known methods in the literature. In
addition, our experiments show that both OSIM and EaSyIM are effective,
efficient, scalable and significantly enhance the ability to analyze real
datasets.Comment: ACM SIGMOD Conference 2016, 18 pages, 29 figure
Specific volumes of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy in the liquid, glass, and crystalline states
The specific volumes of the Zr41.2Ti13.8CU12.5Ni10.0Be2.25 alloy as a function of temperature, T, are determined by employing an image digitizing technique and numerical calculation methods applied to the electrostatically levitated spherical alloy. The linear fitting of the volumes of the alloy in the liquid, V-l, glass, V-g, and crystalline V-c, states in the temperature ranges shown in parentheses are V-l(T) = 0.1583 + 8.877 x 10(-6)T(cm^(3)/g) (700-1300 K); V-g(T) = 0.1603 + 5.528 x 10^(-6)T (400-550 K); V-c(T) = 0.1583 + 6.211 x 10(-6)T(400-850 K). The average volume thermal expansion coefficients within the temperature ranges are determined to be 5.32, 3.39, and 3.83 x 10^(-5) (1/K) for the liquid, glass, and crystalline states, respectively
Atomic Transport in Dense, Multi-Component Metallic Liquids
Pd43Ni10Cu27P0 has been investigated in its equilibrium liquid state with
incoherent, inelastic neutron scattering. As compared to simple liquids, liquid
PdNiCuP is characterized by a dense packing with a packing fraction above 0.5.
The intermediate scattering function exhibits a fast relaxation process that
precedes structural relaxation. Structural relaxation obeys a time-temperature
superposition that extends over a temperature range of 540K. The mode-coupling
theory of the liquid to glass transition (MCT) gives a consistent description
of the dynamics which governs the mass transport in liquid PdNiCuP alloys. MCT
scaling laws extrapolate to a critical temperature Tc at about 20% below the
liquidus temperature. Diffusivities derived from the mean relaxation times
compare well with Co diffusivities from recent tracer diffusion measurements
and diffsuivities calculated from viscosity via the Stokes-Einstein relation.
In contrast to simple metallic liquids, the atomic transport in dense, liquid
PdNiCuP is characterized by a drastical slowing down of dynamics on cooling, a
q^{-2} dependence of the mean relaxation times at intermediate q and a
vanishing isotope effect as a result of a highly collective transport
mechanism. At temperatures as high as 2Tc diffusion in liquid PdNiCuP is as
fast as in simple liquids at the melting point. However, the difference in the
underlying atomic transport mechanism indicates that the diffusion mechanism in
liquids is not controlled by the value of the diffusivity but rather by that of
the packing fraction
Ferromagnetism at 300 K in spin-coated anatasea and rutile Ti0.95Fe0.05O2 films
Thin films of Ti1-xFexO2 (x=0 and 0.05) have been prepared on sapphire
substrates by spin-on technique starting from metal organic precursors. When
heat treated in air at 550 and 700 degrees C respectively, these films present
pure anatase and rutile structures as shown both by X-ray diffraction and Raman
spectroscopy. Optical absorption indicate a high degree of transparency in the
visible region. Such films show a very small magnetic moment at 300 K. However,
when the anatase and the rutile films are annealed in a vacuum of 1x10-5 Torr
at 500 degrees C and 600 degrees C respectively, the magnetic moment, at 300 K,
is strongly enhanced reaching 0.46 B/Fe for the anatase sample and 0.48
B/Fe for the rutile one. The ferromagnetic Curie temperature of these
samples is above 350 K.Comment: 13 october 200
Tuning the critical gelation temperature of thermo-responsive diblock copolymer worm gels
Amphiphilic diblock copolymer nano-objects can be readily prepared using reversible addition–fragmentation chain transfer (RAFT) polymerization. For example, poly(glycerol monomethacrylate) (PGMA) chain transfer agents (CTA) can be chain-extended using 2-hydroxypropyl methacrylate (HPMA) via RAFT aqueous dispersion polymerization to form well-defined spheres, worms or vesicles at up to 25% solids. The worm morphology is of particular interest, since multiple inter-worm contacts lead to the formation of soft free-standing gels, which undergo reversible degelation on cooling to sub-ambient temperatures. However, the critical gelation temperature (CGT) for such thermo-responsive gels is ≤20 °C, which is relatively low for certain biomedical applications. In this work, a series of new amphiphilic diblock copolymers are prepared in which the core-forming block comprises a statistical mixture of HPMA and di(ethylene glycol) methyl ether methacrylate (DEGMA), which is a more hydrophilic monomer than HPMA. Statistical copolymerizations proceeded to high conversion and low polydispersities were achieved in all cases (Mw/Mn < 1.20). The resulting PGMA-P(HPMA-stat-DEGMA) diblock copolymers undergo polymerization-induced self-assembly at 10% w/w solids to form free-standing worm gels. SAXS studies indicate that reversible (de)gelation occurs below the CGT as a result of a worm-to-sphere transition, with further cooling to 5 °C affording weakly interacting copolymer chains with a mean aggregation number of approximately four. This corresponds to almost molecular dissolution of the copolymer spheres. The CGT can be readily tuned by varying the mean degree of polymerization and the DEGMA content of the core-forming statistical block. For example, a CGT of 31 °C was obtained for PGMA59-P(HPMA91-stat-DEGMA39). This is sufficiently close to physiological temperature (37 °C) to suggest that these new copolymer gels may offer biomedical applications as readily-sterilizable scaffolds for mammalian cells, since facile cell harvesting can be achieved after a single thermal cycle
Orthorhombic distortion on Li intercalation in anatase
Published versio
Effects of crystallization and dopant concentration on the emission behavior of TiO2:Eu nanophosphors
Uniform, spherical-shaped TiO2:Eu nanoparticles with different doping concentrations have been synthesized through controlled hydrolysis of titanium tetrabutoxide under appropriate pH and temperature in the presence of EuCl3·6H2O. Through air annealing at 500°C for 2 h, the amorphous, as-grown nanoparticles could be converted to a pure anatase phase. The morphology, structural, and optical properties of the annealed nanostructures were studied using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy [EDS], and UV-Visible diffuse reflectance spectroscopy techniques. Optoelectronic behaviors of the nanostructures were studied using micro-Raman and photoluminescence [PL] spectroscopies at room temperature. EDS results confirmed a systematic increase of Eu content in the as-prepared samples with the increase of nominal europium content in the reaction solution. With the increasing dopant concentration, crystallinity and crystallite size of the titania particles decreased gradually. Incorporation of europium in the titania particles induced a structural deformation and a blueshift of their absorption edge. While the room-temperature PL emission of the as-grown samples is dominated by the 5D0 - 7Fj transition of Eu+3 ions, the emission intensity reduced drastically after thermal annealing due to outwards segregation of dopant ions
- …