799 research outputs found

    Magnetic Soliton and Soliton Collisions of Spinor Bose-Einstein Condensates in an Optical Lattice

    Full text link
    We study the magnetic soliton dynamics of spinor Bose-Einstein condensates in an optical lattice which results in an effective Hamiltonian of anisotropic pseudospin chain. A modified Landau-Lifshitz equation is derived and exact magnetic soliton solutions are obtained analytically. Our results show that the time-oscillation of the soliton size can be controlled in practical experiment by adjusting of the light-induced dipole-dipole interaction. Moreover, the elastic collision of two solitons is investigated.Comment: 16 pages, 5 figure

    Topological Excitations in Spinor Bose-Einstein Condensates

    Full text link
    We investigate the properties of skyrmion in the ferromagnetic state of spin-1 Bose-Einstein condensates by means of the mean-field theory and show that the size of skyrmion is fixed to the order of the healing length. It is shown that the interaction between two skyrmions with oppositely rotating spin textures is attractive when their separation is large, following a unique power-law behavior with a power of -7/2.Comment: 4 pages, 5 figure

    A novel method to create a vortex in a Bose-Einstein condensate

    Full text link
    It has been shown that a vortex in a BEC with spin degrees of freedom can be created by manipulating with external magnetic fields. In the previous work, an optical plug along the vortex axis has been introduced to avoid Majorana flips, which take place when the external magnetic field vanishes along the vortex axis while it is created. In the present work, in contrast, we study the same scenario without introducing the optical plug. The magnetic field vanishes only in the center of the vortex at a certain moment of the evolution and hence we expect that the system will lose only a fraction of the atoms by Majorana flips even in the absence of an optical plug. Our conjecture is justified by numerically solving the Gross-Pitaevskii equation, where the full spinor degrees of freedom of the order parameter are properly taken into account. A significant simplification of the experimental realization of the scenario is attained by the omission of the optical plug.Comment: 8 pages, 11 figure

    Crab Waist Collision Studies for e+e- Factories

    Get PDF
    Numerical simulations have shown that the recently proposed "crab waist" scheme of beam-beam collisions can substantially boost the luminosity of existing and future electron-positron colliders. In this paper we describe the crab waist concept and discuss potential advantages that such a scheme can provide. We also present the results of beam-beam simulations for the two currently proposed projects based on the crab waist scheme: the DAFNE upgrade and the Super B-factory project.Comment: Invited talk at IR07 Workshop (Interaction Regions for the LHC Upgrade, DAFNE and SuperB), 7-9 November 2007, Frascati, Ital

    Dynamics of F=2 Spinor Bose-Einstein Condensates

    Full text link
    We experimentally investigate and analyze the rich dynamics in F=2 spinor Bose-Einstein condensates of Rb87. An interplay between mean-field driven spin dynamics and hyperfine-changing losses in addition to interactions with the thermal component is observed. In particular we measure conversion rates in the range of 10^-12 cm^3/s for spin changing collisions within the F=2 manifold and spin-dependent loss rates in the range of 10^-13 cm^3/s for hyperfine-changing collisions. From our data we observe a polar behavior in the F=2 ground state of Rb87, while we measure the F=1 ground state to be ferromagnetic. Furthermore we see a magnetization for condensates prepared with non-zero total spin.Comment: 4 pages, 2 figures, RevTe

    Collective Oscillations of Vortex Lattices in Rotating Bose-Einstein Condensates

    Full text link
    The complete low-energy collective-excitation spectrum of vortex lattices is discussed for rotating Bose-Einstein condensates (BEC) by solving the Bogoliubov-de Gennes (BdG) equation, yielding, e.g., the Tkachenko mode recently observed at JILA. The totally symmetric subset of these modes includes the transverse shear, common longitudinal, and differential longitudinal modes. We also solve the time-dependent Gross-Pitaevskii (TDGP) equation to simulate the actual JILA experiment, obtaining the Tkachenko mode and identifying a pair of breathing modes. Combining both the BdG and TDGP approaches allows one to unambiguously identify every observed mode.Comment: 5 pages, 4 figure

    Spontaneous Vortex Lattices in Quasi 2D Dipolar Spinor Condensates

    Full text link
    Motivated by recent experiments\cite{BA}\cite{BB}, we study quasi 2D ferromagnetic condensates with various aspect ratios. We find that in zero magnetic field, dipolar energy generates a local energy minimum with all the spins lie in the 2D plane forming a row of {\em circular} spin textures with {\em alternating} orientation, corresponding to a packing of vortices of {\em identical} vorticity in different spin components. In a large magnetic field, the system can fall into a long lived dynamical state consisting of an array of elliptic and hyperbolic Mermin-Ho spin textures, while the true equilibrium is an uniaxial spin density wave with a single wave-vector along the magnetic field, and a wavelength similar to the characteristic length of the long lived vortex array state.Comment: 4 pages, 6 figure

    Half-Quantum Vortices in Thin Film of Superfluid 3^3He

    Full text link
    Stability of a half-quantum vortex (HQV) in superfluid 3^3He has been discussed recently by Kawakami, Tsutsumi and Machida in Phys. Rev. B {\bf 79}, 092506 (2009). We further extend this work here and consider the A2_2 phase of superfluid 3^3He confined in thin slab geometry and analyze the HQV realized in this setting. Solutions of HQV and singly quantized singular vortex are evaluated numerically by solving the Ginzburg-Landau (GL) equation and respective first critical angular velocities are obtained by employing these solutions. We show that the HQV in the A2_2 phase is stable near the boundary between the A2_2 and A1_1 phases. It is found that temperature and magnetic field must be fixed first in the stable region and subsequently the angular velocity of the system should be increased from zero to a sufficiently large value to create a HQV with sufficiently large probability. A HQV does not form if the system starts with a fixed angular velocity and subsequently the temperature is lowered down to the A2_2 phase. It is estimated that the external magnetic field with strength on the order of 1 T is required to have a sufficiently large domain in the temperature-magnetic field phase diagram to have a stable HQV.Comment: 5 pages, 5 figure
    corecore