198 research outputs found
Sickle Cell Disease: New Opportunities and Challenges in Africa.
Sickle cell disease (SCD) is one of the most common genetic causes of illness and death in the world. This is a review of SCD in Africa, which bears the highest burden of disease. The first section provides an introduction to the molecular basis of SCD and the pathophysiological mechanism of selected clinical events. The second section discusses the epidemiology of the disease (prevalence, morbidity, and mortality), at global level and within Africa. The third section discusses the laboratory diagnosis and management of SCD, emphasizing strategies that been have proven to be effective in areas with limited resources. Throughout the review, specific activities that require evidence to guide healthcare in Africa, as well as strategic areas for further research, will be highlighted
‘I can die today, I can die tomorrow’: lay perceptions of sickle cell disease in Kumasi, Ghana at a point of transition
Objective. To describe the lay meanings of sickle cell disease (SCD) in the Ashanti region of Ghana
Transcranial Doppler and Magnetic Resonance in Tanzanian Children With Sickle Cell Disease
Background and Purpose: We determined prevalences of neurological complications, vascular abnormality, and infarction in Tanzanian children with sickle cell disease. // Methods: Children with sickle cell disease were consecutively enrolled for transcranial Doppler; those with slightly elevated (>150 cm/s), low (150 cm/s was associated with frequent painful crises and low hemoglobin level. Absent/low CBFv was associated with low hemoglobin level and history of unilateral weakness. In 49 out of 67 children with low/absent/elevated transcranial Doppler undergoing magnetic resonance imaging, 43% had infarction, whereas 24 out of 48 (50%) magnetic resonance angiographies were abnormal. One had hemorrhagic infarction; none had microbleeds. Posterior circulation infarcts occurred in 14%. Of 11 children with previous seizure undergoing magnetic resonance imaging, 10 (91%) had infarction (5 silent) compared with 11 out of 38 (29%) of the remainder ( P=0.003). Of 7 children with clinical stroke, 2 had recurrent stroke and 3 died; 4 out of 5 had absent CBFv. Of 193 without stroke, 1 died and 1 had a stroke; both had absent CBFv. // Conclusions: In one-third of Tanzanian children with sickle cell disease, CBFv is outside the normal range, associated with frequent painful crises and low hemoglobin level, but not hemolysis. Half have abnormal magnetic resonance angiography. African children with sickle cell disease should be evaluated with transcranial Doppler; those with low/absent/elevated CBFv should undergo magnetic resonance imaging/magnetic resonance angiography
Defining the phenotypes of sickle cell disease.
The sickle cell gene is pleiotropic in nature. Although it is a single gene mutation, it has multiple phenotypic expressions that constitute the complications of sickle cell disease. The frequency and severity of these complications vary considerably both latitudinally in patients and longitudinally in the same patient over time. Thus, complications that occur in childhood may disappear, persist or get worse with age. Dactylitis and stroke, for example, occur mostly in childhood, whereas leg ulcers and renal failure typically occur in adults. It is essential that the phenotypic manifestations of sickle cell disease be defined accurately so that communication among providers and researchers facilitates the implementation of appropriate and cost-effective diagnostic and therapeutic modalities. The aim of this review is to define the complications that are specific to sickle cell disease based on available evidence in the literature and the experience of hematologists in this field
Proceedings of a Sickle Cell Disease Ontology workshop - Towards the first comprehensive ontology for Sickle Cell Disease
Sickle cell disease (SCD) is a debilitating single gene disorder caused by a single point mutation that results in physical deformation (i.e. sickling) of erythrocytes at reduced oxygen tensions. Up to 75% of SCD in newborns world-wide occurs in sub-Saharan Africa, where neonatal and childhood mortality from sickle cell related complications is high. While SCD research across the globe is tackling the disease on multiple fronts, advances have yet to significantly impact on the health and quality of life of SCD patients, due to lack of coordination of these disparate efforts. Ensuring data across studies is directly comparable through standardization is a necessary step towards realizing this goal. Such a standardization requires the development and implementation of a disease-specific ontology for SCD that is applicable globally. Ontology development is best achieved by bringing together experts in the domain to contribute their knowledge. The SCD community and H3ABioNet members joined forces at a recent SCD Ontology workshop to develop an ontology covering aspects of SCD under the classes: phenotype, diagnostics, therapeutics, quality of life, disease modifiers and disease stage. The aim of the workshop was for participants to contribute their expertise to development of the structure and contents of the SCD ontology. Here we describe the proceedings of the Sickle Cell Disease Ontology Workshop held in Cape Town South Africa in February 2016 and its outcomes. The objective of the workshop was to bring together experts in SCD from around the world to contribute their expertise to the development of various aspects of the SCD ontology
Association of Coagulation Activation with Clinical Complications in Sickle Cell Disease
Background: The contribution of hypercoagulability to the pathophysiology of sickle cell disease (SCD) remains poorly defined. We sought to evaluate the association of markers of coagulation and platelet activation with specific clinical complications and laboratory variables in patients with SCD. Design and Methods: Plasma markers of coagulation activation (D-dimer and TAT), platelet activation (soluble CD40 ligand), microparticle-associated tissue factor (MPTF) procoagulant activity and other laboratory variables were obtained in a cohort of patients with SCD. Tricuspid regurgitant jet velocity was determined by Doppler echocardiography and the presence/history of clinical complications was ascertained at the time of evaluation, combined with a detailed review of the medical records. Results: No significant differences in the levels of D-dimer, TAT, soluble CD40 ligand, and MPTF procoagulant activity were observed between patients in the SS/SD/Sb 0 thalassemia and SC/Sb + thalassemia groups. Both TAT and D-dimer were significantly correlated with measures of hemolysis (lactate dehydrogenase, indirect bilirubin and hemoglobin) and soluble vascular cell adhesion molecule-1. In patients in the SS/SD/Sb 0 thalassemia group, D-dimer was associated with a history of stroke (p = 0.049), TAT was associated with a history of retinopathy (p = 0.0176), and CD40 ligand was associated with the frequency of pain episodes (p = 0.039). In multivariate analyses, D-dimer was associated with reticulocyte count, lactat
Recent Advances in Childhood Arterial Ischemic Stroke
Although many underlying diseases have been reported in the setting of childhood arterial ischemic stroke, emerging research demonstrates that non-atherosclerotic intracerebral arteriopathies in otherwise healthy children are prevalent. Minor infections may play a role in arteriopathies that have no other apparent underlying cause. Although stroke in childhood differs in many aspects from adult stroke, few systematic studies specific to pediatrics are available to inform stroke management. Treatment trials of pediatric stroke are required to determine the best strategies for acute treatment and secondary stroke prevention. The high cost of pediatric stroke to children, families, and society demands further study of its risk factors, management, and outcomes. This review focuses on the recent findings in childhood arterial ischemic stroke
Genetic risk factors for cerebrovascular disease in children with sickle cell disease: design of a case-control association study and genomewide screen
BACKGROUND: The phenotypic heterogeneity of sickle cell disease is likely the result of multiple genetic factors and their interaction with the sickle mutation. High transcranial doppler (TCD) velocities define a subgroup of children with sickle cell disease who are at increased risk for developing ischemic stroke. The genetic factors leading to the development of a high TCD velocity (i.e. cerebrovascular disease) and ultimately to stroke are not well characterized. METHODS: We have designed a case-control association study to elucidate the role of genetic polymorphisms as risk factors for cerebrovascular disease as measured by a high TCD velocity in children with sickle cell disease. The study will consist of two parts: a candidate gene study and a genomewide screen and will be performed in 230 cases and 400 controls. Cases will include 130 patients (TCD ≥ 200 cm/s) randomized in the Stroke Prevention Trial in Sickle Cell Anemia (STOP) study as well as 100 other patients found to have high TCD in STOP II screening. Four hundred sickle cell disease patients with a normal TCD velocity (TCD < 170 cm/s) will be controls. The candidate gene study will involve the analysis of 28 genetic polymorphisms in 20 candidate genes. The polymorphisms include mutations in coagulation factor genes (Factor V, Prothrombin, Fibrinogen, Factor VII, Factor XIII, PAI-1), platelet activation/function (GpIIb/IIIa, GpIb IX-V, GpIa/IIa), vascular reactivity (ACE), endothelial cell function (MTHFR, thrombomodulin, VCAM-1, E-Selectin, L-Selectin, P-Selectin, ICAM-1), inflammation (TNFα), lipid metabolism (Apo A1, Apo E), and cell adhesion (VCAM-1, E-Selectin, L-Selectin, P-Selectin, ICAM-1). We will perform a genomewide screen of validated single nucleotide polymorphisms (SNPs) in pooled DNA samples from 230 cases and 400 controls to study the possible association of additional polymorphisms with the high-risk phenotype. High-throughput SNP genotyping will be performed through MALDI-TOF technology using Sequenom's MassARRAY™ system. DISCUSSION: It is expected that this study will yield important information on genetic risk factors for the cerebrovascular disease phenotype in sickle cell disease by clarifying the role of candidate genes in the development of high TCD. The genomewide screen for a large number of SNPs may uncover the association of novel polymorphisms with cerebrovascular disease and stroke in sickle cell disease
- …