32,483 research outputs found
-kaon cross section in meson exchange model
We calculate the cross section for the dissociation of by kaons
within the framework of a meson exchange model including anomalous parity
interactions. Off-shell effects at the vertices were handled with QCD sum rule
estimates for the running coupling constants. The total -kaon cross
section was found to be mb for 4.1\leq\sqrt{s}\leq5 \GeV.Comment: 13 pages, 4 eps figure
Mean curvature flow of monotone Lagrangian submanifolds
We use holomorphic disks to describe the formation of singularities in the
mean curvature flow of monotone Lagrangian submanifolds in .Comment: 37 pages, 3 figure
Visual servoing by partitioning degrees of freedom
There are many design factors and choices when mounting a vision system for robot control. Such factors may include the kinematic and dynamic characteristics in the robot's degrees of freedom (DOF), which determine what velocities and fields-of-view a camera can achieve. Another factor is that additional motion components (such as pan-tilt units) are often mounted on a robot and introduce synchronization problems. When a task does not require visually servoing every robot DOF, the designer must choose which ones to servo. Questions then arise as to what roles, if any, do the remaining DOF play in the task. Without an analytical framework, the designer resorts to intuition and try-and-see implementations. This paper presents a frequency-based framework that identifies the parameters that factor into tracking. This framework gives design insight which was then used to synthesize a control law that exploits the kinematic and dynamic attributes of each DOF. The resulting multi-input multi-output control law, which we call partitioning, defines an underlying joint coupling to servo camera motions. The net effect is that by employing both visual and kinematic feedback loops, a robot can quickly position and orient a camera in a large assembly workcell. Real-time experiments tracking people and robot hands are presented using a 5-DOF hybrid (3-DOF Cartesian gantry plus 2-DOF pan-tilt unit) robot
Recommended from our members
Joint-coupled compensation effects in visually servoed tracking
Humans have degrees-of-freedom (DOF) of varying bandwidths and one casually observes that we coordinate these DOF while visually tracking. This suggests that joint interplay aids tracking performance. In a control scheme we call partitioning, both image and kinematic data are used to visually-servo a 5-DOF robot by defining a joint-coupling among the rotational and translational DOF. Analysis of simulations and experiments reveal that a robot's fast bandwidth joints physically serve as lead compensators when coupled to slower joints thus reducing tracking lag
Molecular beam epitaxial growth of high-quality InSb on InP and GaAs substrates
Epitaxial layers of InSb were grown on InP and GaAs substrates by molecular beam epitaxy. The dependence of the epilayer quality on flux ratio, J sub Sb4/J sub In, was studied. Deviation from an optimum value of J sub Sb4/J sub In (approx. 2) during growth led to deterioration in the surface morphology and the electrical and crystalline qualities of the films. Room temperature electron mobilities as high as 70,000 and 53,000 sq cm /V-s were measured in InSb layers grown on InP and GaAs substrates, respectively. Unlike the previous results, the conductivity in these films is n-type even at T = 13 K, and no degradation of the electron mobility due to the high density of dislocations was observed. The measured electron mobilities (and carrier concentrations) at 77 K in InSb layers grown on InP and GaAs substrates are 110,000 sq cm/V-s (3 x 10(15) cm(-3)) and 55,000 sq cm/V-s (4.95 x 10(15) cm(-3)), respectively, suggesting their application to electronic devices at cryogenic temperatures
Higher Derivative CP(N) Model and Quantization of the Induced Chern-Simons Term
We consider higher derivative CP(N) model in 2+1 dimensions with the
Wess-Zumino-Witten term and the topological current density squared term. We
quantize the theory by using the auxiliary gauge field formulation in the path
integral method and prove that the extended model remains renormalizable in the
large N limit. We find that the Maxwell-Chern-Simons theory is dynamically
induced in the large N effective action at a nontrivial UV fixed point. The
quantization of the Chern-Simons term is also discussed.Comment: 8 pages, no figure, a minor change in abstract, added Comments on the
quantization of the Chern-Simons term whose coefficient is also corrected,
and some references are added. Some typos are corrected. Added a new
paragraph checking the equivalence between (3) and (5), and a related
referenc
- âŠ