17 research outputs found

    Virulence Determinants of Non-typhoidal <em>Salmonellae</em>

    Get PDF
    Non-typhoidal Salmonellae (NTS) belong to Salmonella enterica subspecies enterica and are common causes of foodborne illnesses in humans. Diarrhea is a common symptom but infection occasionally results in life-threatening systemic involvement. One member of the group, S. enterica subspecies enterica serovar Typhimurium has been extensively studied in live animal models particularly mice and cattle, leading to a better understanding of the pathogenesis of NTS and the development of diarrhea, respectively. This comprehensive review provides an insight into the genetic regulation of over 200 virulence determinants and their involvement in the four steps of Salmonella pathogenesis, namely: attachment, invasion, macrophage survival and replication, and systemic dissemination. There is, however, a paucity of information on the functions of some virulence factors present on the Salmonella pathogenicity islands (SPIs). The emergence of next generation sequencing (NGS) technology and the availability of more bacterial genomes should provide further insights into the biology of virulence determinants, mechanisms of NTS pathogenesis and host adaptation of Salmonella. The new knowledge should translate into improvement and innovations in food safety, and control of salmonellosis as well as better understanding of zoonotic infections in the context of One Health capturing the risks to humans, animals and the environment

    Tracking <em>Salmonella</em> Enteritidis in the Genomics Era: Clade Definition Using a SNP-PCR Assay and Implications for Population Structure

    Get PDF
    Salmonella enterica serovar Enteritidis (or Salmonella Enteritidis, SE) is one of the oldest members of the genus Salmonella, based on the date of first description and has only gained prominence as a significant bacterial contaminant of food over the last three or four decades. Currently, SE is the most common Salmonella serovar causing foodborne illnesses. Control measures to alleviate human infections require that food isolates be characterized and this was until recently carried out using Pulsed-Field Gel Electrophoresis (PFGE) and phage typing as the main laboratory subtyping tools for use in demonstrating relatedness of isolates recovered from infected humans and the food source. The results provided by these analytical tools were presented with easy-to-understand and comprehensible nomenclature, however, the techniques were inherently poorly discriminatory, which is attributable to the clonality of SE. The tools have now given way to whole genome sequencing which provides a full and comprehensive genetic attributes of an organism and a very attractive and superior tool for defining an isolate and for inferring genetic relatedness among isolates. A comparative phylogenomic analysis of isolates of choice provides both a visual appreciation of relatedness as well as quantifiable estimates of genetic distance. Despite the considerable information provided by whole genome analysis and development of a phylogenetic tree, the approach does not lend itself to generating a useful nomenclature-based description of SE subtypes. To this end, a highly discriminatory, cost-effective, high throughput, validated single nucleotide based genotypic polymerase chain reaction assay (SNP-PCR) was developed focussing on 60 polymorphic loci. The procedure was used to identify 25 circulating clades of SE, the largest number so far described for this organism. The new subtyping test, which exploited whole genome sequencing data, displays the attributes of an ideal subtyping test: high discrimination, low cost, rapid, highly reproducible and epidemiological concordance. The procedure is useful for identifying the subtype designation of an isolate, for defining the population structure of the organism as well as for surveillance and outbreak detection

    <em>Salmonella</em>: A Brief Review

    No full text
    Salmonella causes significant illness in humans and animals and is a major public health concern worldwide, contributing to an increased economic burden. Salmonella is usually transmitted through the consumption of contaminated food, such as raw or undercooked meat, poultry, eggs, and dairy products, and water or through contact with infected animals or their environment. The most common symptoms of salmonellosis, the illness caused by Salmonella, include diarrhea, fever, and abdominal cramps; in severe cases, the infection can lead to hospitalization and even death. The classification and taxonomy of Salmonella were historically controversial, but the genus is now widely accepted as composed of two species and over 2600 serovars. Some of these serovars infect a single host, that is, host-restricted, whereas others have a broad host range. Colonization of the host is complex and involves a series of interactions between the Salmonella and the host’s immune system. Salmonella utilizes an array of over 300 virulence factors, mostly present in Salmonella pathogenicity islands (SPIs) to achieve adherence, invasion, immune evasion, and, occasionally, systemic infection. Once colonized, it secretes a number of toxins and inflammatory mediators that cause diarrhea and other symptoms of salmonellosis. The overuse and misuse of antibiotics in human and animal medicine and agriculture have contributed to the development of antimicrobial resistance (AMR) in Salmonella, making AMR strains more severe and difficult to treat and increasing the risk of morbidity and mortality. Various methods are used for the detection of Salmonella, including traditional culture methods, molecular methods such as polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP), and immunological-based assays. Because of its ubiquitous distribution, the prevention and control of Salmonella transmission remain a significant challenge. This chapter briefly covers the history, classification, transmission, pathogenesis and virulence factors, antimicrobial resistance genes, detection, diagnosis, surveillance, prevention, and control pertaining to Salmonella

    Rapid detection and serovar identification of common Salmonella enterica serovars in Canada using a new pyrosequencing assay

    No full text
    Serotyping of Salmonella enterica subspecies enterica is a critical step for foodborne salmonellosis investigation. We have developed a new assay to identify Salmonella enterica subsp. enterica (S. enterica) serovars based on a triplex polymerase chain reaction (PCR) with pyrosequencing for amplicon confirmation and phylogenetic discrimination of strain. The top 54 most prevalent serovars of S. enterica in Canada were examined with a total of 23 single nucleotide polymorphisms (SNPs) and/or variations (SNVs) located on three genes (fliD, sopE2, and spaO). Seven of the most common serovars, including Newport, Typhi, Javiana, Infantis, Thompson, Heidelberg and Enteritidis are successfully distinguished from the other serovars based on their unique SNP/SNV combinations. The remaining serovars, including Typhimurium, ssp I 4,[5],12:i:-, and Saintpaul are further divided into 47 subgroups that demonstrate the relatedness to phylogenetic classifications of each serovar. This pyrosequencing assay is not only cost-effective, rapid, and user-friendly, but also provides phylogenetic information by analysing 23 selected SNPs. With the additional layer of confidence to the PCR results and the accuracy and speed of pyrosequencing, this novel method would benefit the food industry and provides a tool for rapid outbreak investigation through quick detection and identification of common S. enterica serovars in Canada.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Salmonella enterica Prophage Sequence Profiles Reflect Genome Diversity and Can Be Used for High Discrimination Subtyping.

    Get PDF
    Non-typhoidal Salmonella is a leading cause of foodborne illness worldwide. Prompt and accurate identification of the sources of Salmonella responsible for disease outbreaks is crucial to minimize infections and eliminate ongoing sources of contamination. Current subtyping tools including single nucleotide polymorphism (SNP) typing may be inadequate, in some instances, to provide the required discrimination among epidemiologically unrelated Salmonella strains. Prophage genes represent the majority of the accessory genes in bacteria genomes and have potential to be used as high discrimination markers in Salmonella. In this study, the prophage sequence diversity in different Salmonella serovars and genetically related strains was investigated. Using whole genome sequences of 1,760 isolates of S. enterica representing 151 Salmonella serovars and 66 closely related bacteria, prophage sequences were identified from assembled contigs using PHASTER. We detected 154 different prophages in S. enterica genomes. Prophage sequences were highly variable among S. enterica serovars with a median ± interquartile range (IQR) of 5 ± 3 prophage regions per genome. While some prophage sequences were highly conserved among the strains of specific serovars, few regions were lineage specific. Therefore, strains belonging to each serovar could be clustered separately based on their prophage content. Analysis of S. Enteritidis isolates from seven outbreaks generated distinct prophage profiles for each outbreak. Taken altogether, the diversity of the prophage sequences correlates with genome diversity. Prophage repertoires provide an additional marker for differentiating S. enterica subtypes during foodborne outbreaks

    Table_5_Salmonella enterica Prophage Sequence Profiles Reflect Genome Diversity and Can Be Used for High Discrimination Subtyping.XLSX

    No full text
    <p>Non-typhoidal Salmonella is a leading cause of foodborne illness worldwide. Prompt and accurate identification of the sources of Salmonella responsible for disease outbreaks is crucial to minimize infections and eliminate ongoing sources of contamination. Current subtyping tools including single nucleotide polymorphism (SNP) typing may be inadequate, in some instances, to provide the required discrimination among epidemiologically unrelated Salmonella strains. Prophage genes represent the majority of the accessory genes in bacteria genomes and have potential to be used as high discrimination markers in Salmonella. In this study, the prophage sequence diversity in different Salmonella serovars and genetically related strains was investigated. Using whole genome sequences of 1,760 isolates of S. enterica representing 151 Salmonella serovars and 66 closely related bacteria, prophage sequences were identified from assembled contigs using PHASTER. We detected 154 different prophages in S. enterica genomes. Prophage sequences were highly variable among S. enterica serovars with a median ± interquartile range (IQR) of 5 ± 3 prophage regions per genome. While some prophage sequences were highly conserved among the strains of specific serovars, few regions were lineage specific. Therefore, strains belonging to each serovar could be clustered separately based on their prophage content. Analysis of S. Enteritidis isolates from seven outbreaks generated distinct prophage profiles for each outbreak. Taken altogether, the diversity of the prophage sequences correlates with genome diversity. Prophage repertoires provide an additional marker for differentiating S. enterica subtypes during foodborne outbreaks.</p

    Table_7_Salmonella enterica Prophage Sequence Profiles Reflect Genome Diversity and Can Be Used for High Discrimination Subtyping.XLSX

    No full text
    <p>Non-typhoidal Salmonella is a leading cause of foodborne illness worldwide. Prompt and accurate identification of the sources of Salmonella responsible for disease outbreaks is crucial to minimize infections and eliminate ongoing sources of contamination. Current subtyping tools including single nucleotide polymorphism (SNP) typing may be inadequate, in some instances, to provide the required discrimination among epidemiologically unrelated Salmonella strains. Prophage genes represent the majority of the accessory genes in bacteria genomes and have potential to be used as high discrimination markers in Salmonella. In this study, the prophage sequence diversity in different Salmonella serovars and genetically related strains was investigated. Using whole genome sequences of 1,760 isolates of S. enterica representing 151 Salmonella serovars and 66 closely related bacteria, prophage sequences were identified from assembled contigs using PHASTER. We detected 154 different prophages in S. enterica genomes. Prophage sequences were highly variable among S. enterica serovars with a median ± interquartile range (IQR) of 5 ± 3 prophage regions per genome. While some prophage sequences were highly conserved among the strains of specific serovars, few regions were lineage specific. Therefore, strains belonging to each serovar could be clustered separately based on their prophage content. Analysis of S. Enteritidis isolates from seven outbreaks generated distinct prophage profiles for each outbreak. Taken altogether, the diversity of the prophage sequences correlates with genome diversity. Prophage repertoires provide an additional marker for differentiating S. enterica subtypes during foodborne outbreaks.</p

    Table_3_Salmonella enterica Prophage Sequence Profiles Reflect Genome Diversity and Can Be Used for High Discrimination Subtyping.XLSX

    No full text
    <p>Non-typhoidal Salmonella is a leading cause of foodborne illness worldwide. Prompt and accurate identification of the sources of Salmonella responsible for disease outbreaks is crucial to minimize infections and eliminate ongoing sources of contamination. Current subtyping tools including single nucleotide polymorphism (SNP) typing may be inadequate, in some instances, to provide the required discrimination among epidemiologically unrelated Salmonella strains. Prophage genes represent the majority of the accessory genes in bacteria genomes and have potential to be used as high discrimination markers in Salmonella. In this study, the prophage sequence diversity in different Salmonella serovars and genetically related strains was investigated. Using whole genome sequences of 1,760 isolates of S. enterica representing 151 Salmonella serovars and 66 closely related bacteria, prophage sequences were identified from assembled contigs using PHASTER. We detected 154 different prophages in S. enterica genomes. Prophage sequences were highly variable among S. enterica serovars with a median ± interquartile range (IQR) of 5 ± 3 prophage regions per genome. While some prophage sequences were highly conserved among the strains of specific serovars, few regions were lineage specific. Therefore, strains belonging to each serovar could be clustered separately based on their prophage content. Analysis of S. Enteritidis isolates from seven outbreaks generated distinct prophage profiles for each outbreak. Taken altogether, the diversity of the prophage sequences correlates with genome diversity. Prophage repertoires provide an additional marker for differentiating S. enterica subtypes during foodborne outbreaks.</p

    Image_1_Salmonella enterica Prophage Sequence Profiles Reflect Genome Diversity and Can Be Used for High Discrimination Subtyping.jpg

    No full text
    <p>Non-typhoidal Salmonella is a leading cause of foodborne illness worldwide. Prompt and accurate identification of the sources of Salmonella responsible for disease outbreaks is crucial to minimize infections and eliminate ongoing sources of contamination. Current subtyping tools including single nucleotide polymorphism (SNP) typing may be inadequate, in some instances, to provide the required discrimination among epidemiologically unrelated Salmonella strains. Prophage genes represent the majority of the accessory genes in bacteria genomes and have potential to be used as high discrimination markers in Salmonella. In this study, the prophage sequence diversity in different Salmonella serovars and genetically related strains was investigated. Using whole genome sequences of 1,760 isolates of S. enterica representing 151 Salmonella serovars and 66 closely related bacteria, prophage sequences were identified from assembled contigs using PHASTER. We detected 154 different prophages in S. enterica genomes. Prophage sequences were highly variable among S. enterica serovars with a median ± interquartile range (IQR) of 5 ± 3 prophage regions per genome. While some prophage sequences were highly conserved among the strains of specific serovars, few regions were lineage specific. Therefore, strains belonging to each serovar could be clustered separately based on their prophage content. Analysis of S. Enteritidis isolates from seven outbreaks generated distinct prophage profiles for each outbreak. Taken altogether, the diversity of the prophage sequences correlates with genome diversity. Prophage repertoires provide an additional marker for differentiating S. enterica subtypes during foodborne outbreaks.</p
    corecore