1,311 research outputs found
Delusion of Oral Parasitosis and Thalamic Pain Syndrome
The official published article is available online at http://psy.psychiatryonline.org/cgi/content/abstract/50/5/534Background: Delusional parasitosis is an uncommon psychiatric condition in which patients have the immutable conviction that small, living organisms, such as worms, insects, or larvae infest their skin or other organs. Objective/Method: The authors describe a case of an unusual association of delusional parasitosis and thalamic pain syndrome after left-posterior thalamic hemorrhage. The patient initially suffered from dysesthesia and burning pain typical of thalamic pain syndrome and subsequently developed delusional oral parasitosis ("worms" infesting her mouth). Results: Sulpiride 100 mg/day administered in addition to amitriptyline gradually improved her delusions within 3 months. Discussion: The authors speculate that this specific type of delusion can be elicited by the disruption of the somatosensory pathway and that the subsequent cortical sensory deafferentiation and reorganization arising from this disruption may contribute to the development of delusional parasitosis.PSYCHOSOMATICS. 50(5):534-537 (2009)journal articl
CHAOS DYNAMICAL ANALYSIS OF EEG DATA(Session I : Cross-Disciplinary Physics, The 1st Tohwa University International Meeting on Statistical Physics Theories, Experiments and Computer Simulations)
この論文は国立情報学研究所の電子図書館事業により電子化されました
Origin of the Different Architectures of the Jovian and Saturnian Satellite Systems
The Jovian regular satellite system mainly consists of four Galilean
satellites that have similar masses and are trapped in mutual mean motion
resonances except for the outer satellite, Callisto. On the other hand, the
Saturnian regular satellite system has only one big icy body, Titan, and a
population of much smaller icy moons. We have investigated the origin of these
major differences between the Jovian and Saturnian satellite systems by
semi-analytically simulating the growth and orbital migration of
proto-satellites in an accreting proto-satellite disk. We set up two different
disk evolution/structure models that correspond to Jovian and Saturnian
systems, by building upon previously developed models of an actively-supplied
proto-satellite disk, the formation of gas giants, and observations of young
stars. Our simulations extend previous models by including the (1) different
termination timescales of gas infall onto the proto-satellite disk and (2)
different evolution of a cavity in the disk, between the Jovian and Saturnian
systems. We have performed Monte Carlo simulations and show that in the case of
the Jovian systems, four to five similar-mass satellites are likely to remain
trapped in mean motion resonances. This orbital configuration is formed by type
I migration, temporal stopping of the migration near the disk inner edge, and
quick truncation of gas infall caused by Jupiter opening a gap in the Solar
nebula. The Saturnian systems tend to end up with one dominant body in the
outer regions caused by the slower decay of gas infall associated with global
depletion of the Solar nebula. The total mass and compositional zoning of the
predicted Jovian and Saturnian satellite systems are consistent with the
observed satellite systems.Comment: Accepted to ApJ, 33pages, 6figures, 2table
Comprehensive Functional Analyses of Expressed Sequence Tags in Common Wheat (Triticum aestivum)
About 1 million expressed sequence tag (EST) sequences comprising 125.3 Mb nucleotides were accreted from 51 cDNA libraries constructed from a variety of tissues and organs under a range of conditions, including abiotic stresses and pathogen challenges in common wheat (Triticum aestivum). Expressed sequence tags were assembled with stringent parameters after processing with inbuild scripts, resulting in 37 138 contigs and 215 199 singlets. In the assembled sequences, 10.6% presented no matches with existing sequences in public databases. Functional characterization of wheat unigenes by gene ontology annotation, mining transcription factors, full-length cDNA, and miRNA targeting sites were carried out. A bioinformatics strategy was developed to discover single-nucleotide polymorphisms (SNPs) within our large EST resource and reported the SNPs between and within (homoeologous) cultivars. Digital gene expression was performed to find the tissue-specific gene expression, and correspondence analysis was executed to identify common and specific gene expression by selecting four biotic stress-related libraries. The assembly and associated information cater a framework for future investigation in functional genomics
New femoral remains of Nacholapithecus kerioi: Implications for intraspecific variation and Miocene hominoid evolution
The middle Miocene stem kenyapithecine Nacholapithecus kerioi (16–15 Ma; Nachola, Kenya) is represented by a large number of isolated fossil remains and one of the most complete skeletons in the hominoid fossil record (KNM-BG 35250). Multiple fieldwork seasons performed by Japanese–Kenyan teams during the last part of the 20th century resulted in the discovery of a large sample of Nacholapithecus fossils. Here, we describe the new femoral remains of Nacholapithecus. In well-preserved specimens, we evaluate sex differences and within-species variation using both qualitative and quantitative traits. We use these data to determine whether these specimens are morphologically similar to the species holotype KNM-BG 35250 (which shows some plastic deformation) and to compare Nacholapithecus with other Miocene hominoids and extant anthropoids to evaluate the distinctiveness of its femur. The new fossil evidence reaffirms previously reported descriptions of some distal femoral traits, namely the morphology of the patellar groove. However, results also show that relative femoral head size in Nacholapithecus is smaller, relative neck length is longer, and neck–shaft angle is lower than previously reported for KNM-BG 35250. These traits have a strong functional signal related to the hip joint kinematics, suggesting that the morphology of the proximal femur in Nacholapithecus might be functionally related to quadrupedal-like behaviors instead of more derived antipronograde locomotor modes. Results further demonstrate that other African Miocene apes (with the exception of Turkanapithecus kalakolensis) generally fall within the Nacholapithecus range of variation, whose overall femoral shape resembles that of Ekembo spp. and Equatorius africanus. Our results accord with the previously inferred locomotor repertoire of Nacholapithecus, indicating a combination of generalized arboreal quadrupedalism combined with other antipronograde behaviors (e.g., vertical climbing)
- …