266 research outputs found

    Population genetic analysis of a medicinally significant Australian rainforest tree, Fontainea picrosperma C.T. White (Euphorbiaceae): biogeographic patterns and implications for species domestication and plantation establishment

    Get PDF
    Background: Fontainea picrosperma, a subcanopy tree endemic to the rainforests of northeastern Australia, is of medicinal significance following the discovery of the novel anti-cancer natural product, EBC-46. Laboratory synthesis of EBC-46 is unlikely to be commercially feasible and consequently production of the molecule is via isolation from F. picrosperma grown in plantations. Successful domestication and plantation production requires an intimate knowledge of a taxon’s life-historyattributes and genetic architecture, not only to ensure the maximum capture of genetic diversity from wild source populations, but also to minimise the risk of a detrimental loss in genetic diversity via founder effects during subsequent breeding programs designed to enhance commercially significant agronomic traits. Results: Here we report the use of eleven microsatellite loci (PIC = 0.429; PID = 1.72 × 10−6 ) to investigate the partitioning of genetic diversity within and among seven natural populations of F. picrosperma. Genetic variation among individuals and within populations was found to be relatively low (A = 2.831; HE = 0.407), although there was marked differentiation among populations (PhiPT = 0.248). Bayesian, UPGMA and principal coordinates analyses detected three main genotypic clusters (K = 3), which were present at all seven populations. Despite low levels of historical gene flow (Nm = 1.382), inbreeding was negligible (F = -0.003); presumably due to the taxon’s dioecious breeding system. Conclusion: The data suggests that F. picrosperma was previously more continuously distributed, but that rainforest contraction and expansion in response to glacial-interglacial cycles, together with significant anthropogenic effects have resulted in significant fragmentation. This research provides important tools to support plantation establishment, selection and genetic improvement of this medicinally significant Australian rainforest species

    Molecular markers reveal diversity in composition of Megastigmus (Hymenoptera: Megastigmidae) from eucalypt galls

    Get PDF
    Since outbreaks of the invasive blue gum chalcids Leptocybe spp. began, the genus Megastigmus (Hymenoptera: Megastigmidae) has been increasingly studied as containing potential biocontrol agents against these pests. Megastigmus species have been collected and described from Australia, the presumed origin of Leptocybe spp., with M. zvimendeli and M. lawsoni reported as Leptocybe spp. parasitoids established outside of Australia. Parasitic Megastigmus have been reported to occur locally in the Neotropics, Afrotropic, Palearctic, and Indomalaya biogeographic realms, and in many cases described as new to science. However, molecular tools have not been used in studying parasitic Megastigmus, and difficulties in morphological taxonomy have compromised further understanding of eucalypt-associated Megastigmus as well as the Megastigmus-Leptocybe association. In this study, we used molecular markers to study the species composition and phylogeny of Megastigmus collected from eucalypt galls in Australia and from Leptocybe spp. galls from South Africa, Kenya, Israel, China, and Vietnam. We record thirteen discrete species and a species complex associated with eucalypt galls. A summary of morphological characters is provided to assist morphological delimitation of the studied group. A phylogeny based on 28S rDNA identified species groups of importance to Leptocybe spp. biocontrol agents from four clades with nine species. Relationships between Megastigmus from eucalypt galls and their phytophagous congeners were unresolved. Further molecular work is needed to clarify the identity of many species

    Antiproliferative activity of PEP005, a novel ingenol angelate that modulates PKC functions, alone and in combination with cytotoxic agents in human colon cancer cells

    Get PDF
    PEP005 is a novel ingenol angelate that modulates protein kinases C (PKC) functions by activating PKCδ and inhibiting PKCα. This study assessed the antiproliferative effects of PEP005 alone and in combination with several other anticancer agents in a panel of 10 human cancer cell lines characterised for expression of several PKC isoforms. PEP005 displayed antiproliferative effects at clinically relevant concentrations with a unique cytotoxicity profile that differs from that of most other investigated cytotoxic agents, including staurosporine. In a subset of colon cancer cells, the IC50 of PEP005 ranged from 0.01–140 μM. The antiproliferative effects of PEP005 were shown to be concentration- and time-dependent. In Colo205 cells, apoptosis induction was observed at concentrations ranging from 0.03 to 3 μM. Exposure to PEP005 also induced accumulation of cells in the G1 phase of the cell cycle. In addition, PEP005 increased the phosphorylation of PKCδ and p38. In Colo205 cells, combinations of PEP005 with several cytotoxic agents including oxaliplatin, SN38, 5FU, gemcitabine, doxorubicin, vinorelbine, and docetaxel yielded sequence-dependent antiproliferative effects. Cell cycle blockage induced by PEP005 in late G1 lasted for up to 24 h and therefore a 24 h lag-time between PEP005 and subsequent exposure to cytotoxics was required to optimise PEP005 combinations with several anticancer agents. These data support further evaluation of PEP005 as an anticancer agent and may help to optimise clinical trials with PEP005-based combinations in patients with solid tumours

    The Protein Kinase C Agonist PEP005 (Ingenol 3-Angelate) in the Treatment of Human Cancer: A Balance between Efficacy and Toxicity

    Get PDF
    The diterpene ester ingenol-3-angelate (referred to as PEP005) is derived from the plant Euphorbia peplus. Crude euphorbia extract causes local toxicity and transient inflammation when applied topically and has been used in the treatment of warts, skin keratoses and skin cancer. PEP005 is a broad range activator of the classical (α, β, γ) and novel (δ, ε, η, θ) protein kinase C isoenzymes. Direct pro-apoptotic effects of this drug have been demonstrated in several malignant cells, including melanoma cell lines and primary human acute myelogenous leukemia cells. At micromolar concentrations required to kill melanoma cells this agent causes PKC-independent secondary necrosis. In contrast, the killing of leukemic cells occurs in the nanomolar range, requires activation of protein kinase C δ (PKCδ) and is specifically associated with translocation of PKCδ from the cytoplasm to the nuclear membrane. However, in addition to this pro-apoptotic effect the agent seems to have immunostimulatory effects, including: (i) increased chemokine release by malignant cells; (ii) a general increase in proliferation and cytokine release by activated T cells, including T cells derived from patients with chemotherapy-induced lymphopenia; (iii) local infiltration of neutrophils after topical application with increased antibody-dependent cytotoxicity; and (iv) development of specific anti-cancer immune responses by CD8+ T cells in animal models. Published studies mainly describe effects from in vitro investigations or after topical application of the agent, and careful evaluation of the toxicity after systemic administration is required before the possible use of this agent in the treatment of malignancies other than skin cancers

    Equine Cyathostominae can develop to infective third-stage larvae on straw bedding

    Get PDF
    Background Domesticated grazing animals including horses and donkeys are frequently housed using deep litter bedding systems, where it is commonly presumed that there is no risk of infection from the nematodes that are associated with grazing at pasture. We use two different approaches to test whether equids could become infected with cyathostomines from the ingestion of deep litter straw bedding. Methods Two herbage plot studies were performed in horticultural incubators set up to simulate three straw bedding scenarios and one grass turf positive control. Faeces were placed on 16 plots, and larval recoveries performed on samples of straw/grass substrate over 2- to 3-week periods. Within each incubator, a thermostat was set to maintain an environmental temperature of approximately 10 °C to 20 °C. To provide further validation, 24 samples of straw bedding were collected over an 8-week period from six barns in which a large number of donkeys were housed in a deep litter straw bedding system. These samples were collected from the superficial bedding at 16 sites along a “W” route through each barn. Results No infective larvae were recovered from any of the plots containing dry straw. However, infective cyathostomine larvae were first detected on day 8 from plots containing moist straw. In the straw bedding study, cyathostomine larvae were detected in 18 of the 24 samples. Additionally, in the two barns which were sampled serially, the level of larval infectivity generally increased from week to week, except when the straw bedding was removed and replaced. Conclusions We have demonstrated that equine cyathostomines can develop to infective larvae on moist straw bedding. It is therefore possible for a horse or donkey bedded in deep litter straw to become infected by ingesting the contaminated straw. This has implications for parasite control in stabled equids and potentially in housed ruminants, and further investigation is required in order to establish the relative infective pressure from pasture versus straw bedding

    Anti-fibrotic potential of Tomentosenol A, a constituent of cerumen from the Australian native stingless bee, Tetragonula carbonaria

    Get PDF
    Bioactivity-guided fractionation was used to isolate two compounds, tomentosenol A (1) and torellianone A (2), from a cerumen extract from Tetragonula carbonaria. The anti-fibrotic activity of these compounds was examined using human cultured neonatal foreskin fibroblasts (NFF) and immortalised keratinocytes (HaCaTs). Tomentosenol A (1), inhibited NFF and HaCaT cell proliferation and prevented NFF and HaCaT scratch wound repopulation at 12.5−25 µM concentrations. These inhibitory effects were associated with reduced cell viability, determined by tetrazolium dye (MTT) and sulforhodamine B (SRB) assays. Compound 1 further inhibited transforming growth factor-β1 (TGF-β1)-stimulated, NFF-myofibroblast differentiation and soluble collagen production; and was an effective scavenger of the model oxidant, 2,2-diphenyl-1-picrylhydrazyl (DPPH·), with an EC50 value of 44.7 ± 3.1 µM. These findings reveal significant anti-fibrotic potential for cerumen-derived tomentosenol A (1)

    DNA fragments binding CTCF in vitro and in vivo are capable of blocking enhancer activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Earlier we identified ten 100-300-bp long CTCF-binding DNA fragments selected earlier from a 1-Mb human chromosome 19 region. Here the positive-negative selection technique was used to check the ability of CTCF-binding human genomic fragments to block enhancer-promoter interaction when inserted into the genome.</p> <p>Results</p> <p>Ten CTCF-binding DNA fragments were inserted between the CMV enhancer and CMV minimal promoter driving the herpes simplex virus thymidine kinase (HSV<it>-tk</it>) gene in a vector expressing also the <it>neo</it><sup>R </sup>gene under a separate promoter. The constructs were then integrated into the genome of CHO cells, and the cells resistant to neomycin and ganciclovir (positive-negative selection) were picked up, and their DNAs were PCR analyzed to confirm the presence of the fragments between the enhancer and promoter in both orientations.</p> <p>Conclusions</p> <p>We demonstrated that all sequences identified by their CTCF binding both <it>in vitro </it>and <it>in vivo </it>had enhancer-blocking activity when inserted between the CMV minimal promoter and enhancer in stably transfected CHO cells.</p
    corecore