453 research outputs found

    Quantum Criticality via Magnetic Branes

    Full text link
    Holographic methods are used to investigate the low temperature limit, including quantum critical behavior, of strongly coupled 4-dimensional gauge theories in the presence of an external magnetic field, and finite charge density. In addition to the metric, the dual gravity theory contains a Maxwell field with Chern-Simons coupling. In the absence of charge, the magnetic field induces an RG flow to an infrared AdS3×R2_3 \times {\bf R}^2 geometry, which is dual to a 2-dimensional CFT representing strongly interacting fermions in the lowest Landau level. Two asymptotic Virasoro algebras and one chiral Kac-Moody algebra arise as {\sl emergent symmetries} in the IR. Including a nonzero charge density reveals a quantum critical point when the magnetic field reaches a critical value whose scale is set by the charge density. The critical theory is probed by the study of long-distance correlation functions of the boundary stress tensor and current. All quantities of major physical interest in this system, such as critical exponents and scaling functions, can be computed analytically. We also study an asymptotically AdS6_6 system whose magnetic field induced quantum critical point is governed by a IR Lifshitz geometry, holographically dual to a D=2+1 field theory. The behavior of these holographic theories shares important similarities with that of real world quantum critical systems obtained by tuning a magnetic field, and may be relevant to materials such as Strontium Ruthenates.Comment: To appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye

    Characterization of optical properties and surface roughness profiles: The Casimir force between real materials

    Get PDF
    The Lifshitz theory provides a method to calculate the Casimir force between two flat plates if the frequency dependent dielectric function of the plates is known. In reality any plate is rough and its optical properties are known only to some degree. For high precision experiments the plates must be carefully characterized otherwise the experimental result cannot be compared with the theory or with other experiments. In this chapter we explain why optical properties of interacting materials are important for the Casimir force, how they can be measured, and how one can calculate the force using these properties. The surface roughness can be characterized, for example, with the atomic force microscope images. We introduce the main characteristics of a rough surface that can be extracted from these images, and explain how one can use them to calculate the roughness correction to the force. At small separations this correction becomes large as our experiments show. Finally we discuss the distance upon contact separating two rough surfaces, and explain the importance of this parameter for determination of the absolute separation between bodies.}Comment: 33 pages, 14 figures, to appear in Springer Lecture Notes in Physics, Volume on Casimir Physics, edited by Diego Dalvit, Peter Milonni, David Roberts, and Felipe da Ros

    Precise measurement of hadronic tau-decays with an eta meson

    Full text link
    We have studied hadronic tau decay modes involving an eta meson using 490 fb^{-1} of data collected with the Belle detector at the KEKB asymmetric-energy e+e- collider. The following branching fractions have been measured: B(tau- -> K- eta nu)=(1.58 +- 0.05 +- 0.09)x 10^{-4}, B(tau- -> K- pi0 eta nu)=(4.6 +- 1.1 +- 0.4)x 10^{-5}, B(tau- -> pi- pi0 eta nu)=(1.35 +- 0.03 +- 0.07)x 10^{-3}, B(tau- -> pi- KS eta nu)=(4.4 +- 0.7 +- 0.2)x 10^{-5}, and B(tau- -> K^{*-} eta nu)=(1.34 +- 0.12 +- 0.09)x 10^{-4}. These results are substantially more precise than previous measurements. The new measurements are compared with theoretical calculations based on the CVC hypothesis or the chiral perturbation theory. We also set upper limits on branching fractions for tau decays into K- KS eta nu, pi- KS pi0 eta nu, K- eta eta nu, pi- eta eta nu and non-resonant K- pi^0 eta nu final states.Comment: 24 pages, 7 figure

    Study of B0ˉ→D(∗)0π+π−\bar{B^{0}} \to D^{(*)0} \pi^+ \pi^- Decays

    Get PDF
    We report on a study of B0ˉ→D(∗)0π+π−\bar{B^{0}} \to D^{(*) 0} \pi^+ \pi^- decays using 29.1 fb−1^{-1} of e+e−e^{+}e^{-} annihilation data recorded at the ΄(4S)\Upsilon(4S) resonance with the Belle detector at the KEKB storage ring. Making no assumptions about the intermediate mechanism, the branching fractions for Bˉ0→D0π+π−\bar{B}^0 \to D^0 \pi^+ \pi^- and Bˉ0→D∗0π+π−\bar{B}^0 \to D^{* 0} \pi^+ \pi^- are determined to be (8.0±0.6±1.5)×10−4(8.0 \pm 0.6 \pm 1.5) \times 10^{-4} and (6.2±1.2±1.8)×10−4 (6.2 \pm 1.2 \pm 1.8) \times 10^{-4} respectively. An analysis of B0ˉ→D0π+π−\bar{B^{0}} \to D^{0} \pi^+ \pi^- candidates yields to the first observation of the color-suppressed hadronic decay Bˉ0→D0ρ0\bar{B}^0 \to D^0 \rho^0 with the branching fraction (2.9±1.0±0.4)×10−4(2.9 \pm 1.0 \pm 0.4) \times 10^{-4}. We measure the ratio of branching fractions B(B0ˉ→D0ρ0)/B(B0ˉ→D0ω){\mathcal B}(\bar{B^0} \to D^0 \rho^0) / {\mathcal B}(\bar{B^0} \to D^0 \omega) = 1.6 ±\pm 0.8.Comment: 13 pages, LaTex, 4 figures, submitted to Phys. Lett.

    Measurement of the near-threshold e+e−→DDˉe^+e^- \to D \bar D cross section using initial-state radiation

    Full text link
    We report measurements of the exclusive cross section for e+e−→DDˉe^+e^- \to D \bar D , where D=D0D=D^0 or D+D^+, in the center-of-mass energy range from the DDˉD \bar D threshold to 5GeV/c25\mathrm{GeV}/c^2 with initial-state radiation. The analysis is based on a data sample collected with the Belle detector with an integrated luminosity of 673 fb−1\mathrm{fb}^{-1}.Comment: Presented at EPS07 and LP07 conferences, published in PRD(RC

    Measurement of K^+K^- production in two-photon collisions in the resonant-mass region

    Full text link
    K^+K^- production in two-photon collisions has been studied using a large data sample of 67 fb^{-1} accumulated with the Belle detector at the KEKB asymmetric e^+e^- collider. We have measured the cross section for the process gamma gamma -> K^+ K^- for center-of-mass energies between 1.4 and 2.4 GeV, and found three new resonant structures in the energy region between 1.6 and 2.4 GeV. The angular differential cross sections have also been measured.Comment: 24 pages, 8 figures, to appear in Euro. Phys. Jour.

    Search for Resonant B±→K±h→K±γγB^{\pm}\to K^{\pm} h \to K^{\pm} \gamma \gamma Decays at Belle

    Get PDF
    We report measurements and searches for resonant B±→K±h→K±γγB^{\pm} \to K^{\pm} h \to K^{\pm} \gamma \gamma decays where hh is a η,ηâ€Č,ηc,ηc(2S),χc0,χc2,J/ψ\eta,\eta^{\prime},\eta_{c},\eta_{c}(2S),\chi_{c0},\chi_{c2},J/\psi meson or the X(3872) particle.Comment: accepted by Physics Letters

    Study of charmonia in four-meson final states produced in two-photon collisions

    Get PDF
    We report measurements of charmonia produced in two-photon collisions and decaying to four-meson final states, where the meson is either a charged pion or a charged kaon. The analysis is based on a 395fb^{-1} data sample accumulated with the Belle detector at the KEKB electron-positron collider. We observe signals for the three C-even charmonia eta_c(1S), chi_{c0}(1P) and chi_{c2}(1P) in the pi^+pi^-pi^+pi^-, K^+K^-pi^+pi^- and K^+K^-K^+K^- decay modes. No clear signals for eta_c(2S) production are found in these decay modes. We have also studied resonant structures in charmonium decays to two-body intermediate meson resonances. We report the products of the two-photon decay width and the branching fractions, Gamma_{gamma gamma}B, for each of the charmonium decay modes.Comment: 22 pages, 12 figure

    Measurement of the Branching Fraction for B->eta' K and Search for B->eta'pi+

    Full text link
    We report measurements for two-body charmless B decays with an eta' meson in the final state. Using 11.1X10^6 BBbar pairs collected with the Belle detector, we find BF(B^+ ->eta'K^+)=(79^+12_-11 +-9)x10^-6 and BF(B^0 -> eta'K^0)=(55^+19_-16 +-8)x10^-6, where the first and second errors are statistical and systematic, respectively. No signal is observed in the mode B^+ -> eta' pi^+, and we set a 90% confidence level upper limit of BF(B^+-> eta'pi^+) eta'K^+- decays is investigated and a limit at 90% confidence level of -0.20<Acp<0.32 is obtained.Comment: Submitted to Physics Letters

    Observation of Cabibbo-suppressed and W-exchange Lambda_c^+ baryon decays

    Get PDF
    We present measurements of the Cabibbo-suppressed decays Lambda_c^+ --> Lambda0 K+ and Lambda_c^+ --> Sigma0 K+ (both first observations), Lambda_c^+ --> Sigma+ K+ pi- (seen with large statistics for the first time), Lambda_c^+ --> p K+ K- and Lambda_c^+ --> p phi (measured with improved accuracy). Improved branching ratio measurements for the decays Lambda_c^+ --> Sigma+ K+ K- and Lambda_c^+ --> Sigma+ phi, which are attributed to W-exchange diagrams, are shown. We also present the first evidence for Lambda_c^+ --> Xi(1690)^0 K+ and set an upper limit on the non-resonant decay Lambda_c^+ --> Sigma+ K+ K-. This analysis was performed using 32.6 fb^{-1} of data collected by the Belle detector at the asymmetric e+ e- collider KEKB.Comment: Submitted to Phys. Lett. B. v2: A small correction to the Authorlist was made. An earlier version of this analysis was released as BELLE-CONF-0130, hep-ex/010800
    • 

    corecore