233 research outputs found

    Translational cooling and storage of protonated proteins in an ion trap at subkelvin temperatures

    Full text link
    Gas-phase multiply charged proteins have been sympathetically cooled to translational temperatures below 1 K by Coulomb interaction with laser-cooled barium ions in a linear ion trap. In one case, an ensemble of 53 cytochrome c molecules (mass ~ 12390 amu, charge +17 e) was cooled by ~ 160 laser-cooled barium ions to less than 0.75 K. Storage times of more than 20 minutes have been observed and could easily be extended to more than an hour. The technique is applicable to a wide variety of complex molecules.Comment: same version as published in Phys. Rev.

    Weighing of trapped ion crystals and its applications

    Get PDF
    We have developed a novel scheme to measure the secular motion of trapped ions. Employing pulsed excitation and analysis of the fluorescence of laser cooled ions, we have measured the centre-of-mass mode frequency of single as well as entire ion crystals with a frequency precision better than 5e-4 within an interrogation time on the order of seconds, limited only by the fluorescence collection efficiency and the background noise. We have used this method to measure the mass of ions and observed charge exchange collisions between trapped calcium isotopes.Comment: 24 pages, 15 figure

    Founding weaver ant queens (Oecophylla longinoda) increase production and nanitic worker size when adopting nonnestmate pupae

    Get PDF
    Weaver ants (Oecophylla longinoda Latreille) are used commercially to control pest insects and for protein production. In this respect fast colony growth is desirable for managed colonies. Transplantation of non-nestmate pupae to incipient colonies has been shown to boost colony growth. Our objectives were to find the maximum number of pupae a founding queen can handle, and to measure the associated colony growth. Secondly, we tested if transplantation of pupae led to production of larger nanitic workers (defined as unusually small worker ants produced by founding queens in their first batch of offspring). Forty-five fertilized queens were divided into three treatments: 0 (control), 100 or 300 non-nestmate pupae transplanted to each colony. Pupae transplantation resulted in highly increased growth rates, as pupae were readily adopted by the queens and showed high proportions of surviving (mean = 76%). However, survival was significantly higher when 100 pupae were transplanted compared to transplantation of 300 pupae, indicating that queens were unable to handle 300 pupae adequately and that pupae require some amount of nursing. Nevertheless, within the 60-day experiment the transplantation of 300 pupae increased total colony size more than 10- fold whereas 100 pupae increased the size 5.6 fold, compared to control. This increase was due not only to the individuals added in the form of pupae but also to an increased per capita brood production by the resident queen, triggered by the adopted pupae. The size of hatching pupae produced by the resident queen also increased with the number of pupae transplanted, leading to larger nanitic workers in colonies adopting pupae. In conclusion, pupae transplantation may be used to produce larger colonies with larger worker ants and may thus reduce the time to produce weaver ant colonies for commercial purposes. This in turn may facilitate the implementation of the use of weaver ants.Weaver ants (Oecophylla longinoda Latreille) are used commercially to control pest insects and for protein production. In this respect fast colony growth is desirable for managed colonies. Transplantation of non-nestmate pupae to incipient colonies has been shown to boost colony growth. Our objectives were to find the maximum number of pupae a founding queen can handle, and to measure the associated colony growth. Secondly, we tested if transplantation of pupae led to production of larger nanitic workers (defined as unusually small worker ants produced by founding queens in their first batch of offspring). Forty-five fertilized queens were divided into three treatments: 0 (control), 100 or 300 non-nestmate pupae transplanted to each colony. Pupae transplantation resulted in highly increased growth rates, as pupae were readily adopted by the queens and showed high proportions of surviving (mean = 76%). However, survival was significantly higher when 100 pupae were transplanted compared to transplantation of 300 pupae, indicating that queens were unable to handle 300 pupae adequately and that pupae require some amount of nursing. Nevertheless, within the 60-day experiment the transplantation of 300 pupae increased total colony size more than 10- fold whereas 100 pupae increased the size 5.6 fold, compared to control. This increase was due not only to the individuals added in the form of pupae but also to an increased per capita brood production by the resident queen, triggered by the adopted pupae. The size of hatching pupae produced by the resident queen also increased with the number of pupae transplanted, leading to larger nanitic workers in colonies adopting pupae. In conclusion, pupae transplantation may be used to produce larger colonies with larger worker ants and may thus reduce the time to produce weaver ant colonies for commercial purposes. This in turn may facilitate the implementation of the use of weaver ants.Weaver ants (Oecophylla longinoda Latreille) are used commercially to control pest insects and for protein production. In this respect fast colony growth is desirable for managed colonies. Transplantation of non-nestmate pupae to incipient colonies has been shown to boost colony growth. Our objectives were to find the maximum number of pupae a founding queen can handle, and to measure the associated colony growth. Secondly, we tested if transplantation of pupae led to production of larger nanitic workers (defined as unusually small worker ants produced by founding queens in their first batch of offspring). Forty-five fertilized queens were divided into three treatments: 0 (control), 100 or 300 non-nestmate pupae transplanted to each colony. Pupae transplantation resulted in highly increased growth rates, as pupae were readily adopted by the queens and showed high proportions of surviving (mean = 76%). However, survival was significantly higher when 100 pupae were transplanted compared to transplantation of 300 pupae, indicating that queens were unable to handle 300 pupae adequately and that pupae require some amount of nursing. Nevertheless, within the 60-day experiment the transplantation of 300 pupae increased total colony size more than 10- fold whereas 100 pupae increased the size 5.6 fold, compared to control. This increase was due not only to the individuals added in the form of pupae but also to an increased per capita brood production by the resident queen, triggered by the adopted pupae. The size of hatching pupae produced by the resident queen also increased with the number of pupae transplanted, leading to larger nanitic workers in colonies adopting pupae. In conclusion, pupae transplantation may be used to produce larger colonies with larger worker ants and may thus reduce the time to produce weaver ant colonies for commercial purposes. This in turn may facilitate the implementation of the use of weaver ants.Weaver ants (Oecophylla longinoda Latreille) are used commercially to control pest insects and for protein production. In this respect fast colony growth is desirable for managed colonies. Transplantation of non-nestmate pupae to incipient colonies has been shown to boost colony growth. Our objectives were to find the maximum number of pupae a founding queen can handle, and to measure the associated colony growth. Secondly, we tested if transplantation of pupae led to production of larger nanitic workers (defined as unusually small worker ants produced by founding queens in their first batch of offspring). Forty-five fertilized queens were divided into three treatments: 0 (control), 100 or 300 non-nestmate pupae transplanted to each colony. Pupae transplantation resulted in highly increased growth rates, as pupae were readily adopted by the queens and showed high proportions of surviving (mean = 76%). However, survival was significantly higher when 100 pupae were transplanted compared to transplantation of 300 pupae, indicating that queens were unable to handle 300 pupae adequately and that pupae require some amount of nursing. Nevertheless, within the 60-day experiment the transplantation of 300 pupae increased total colony size more than 10- fold whereas 100 pupae increased the size 5.6 fold, compared to control. This increase was due not only to the individuals added in the form of pupae but also to an increased per capita brood production by the resident queen, triggered by the adopted pupae. The size of hatching pupae produced by the resident queen also increased with the number of pupae transplanted, leading to larger nanitic workers in colonies adopting pupae. In conclusion, pupae transplantation may be used to produce larger colonies with larger worker ants and may thus reduce the time to produce weaver ant colonies for commercial purposes. This in turn may facilitate the implementation of the use of weaver ants

    Pupae transplantation to boost early colony growth in the weaver ant Oecophylla longinoda Latreille (Hymenoptera: Formicidae)

    Get PDF
    Oecophylla ants are currently used for biological control in fruit plantations in Australia, Asia and Africa and for protein production in Asia. To further improve the technology and implement it on a large scale, effective and fast production of live colonies is de¬sirable. Early colony development may be artificially boosted via the use of multiple queens (pleometrosis) and/or by adoption of foreign pupae in developing colonies. In the present experiments, we tested if multiple queens and transplantation of pupae could boost growth in young Oecophylla longinoda colonies. We found out that colonies with two queens artificially placed in the same nest, all perished due to queen fighting, suggesting that pleometrosis is not used by O. longinoda in Benin. In contrast, pupae transplantation resulted in highly increased growth rates, as pupae were readily adopted by the queens and showed high survival rates (mean = 92%). Within the 50-day experi¬ment the total number of individuals in colonies with 50 and 100 pupae transplanted, increased with 169 and 387%, respectively, compared to colonies receiving no pupae. This increase was both due to the individuals added in the form of pupae but also due to an increased per capita brood production by the resident queen, triggered by the adopted pupae. Thus pupae transplantation may be used to shorten the time it takes to produce weaver ant colonies in ant nurseries, and may in this way facilitate the imple-mentation of weaver ant biocontrol in West Africa

    mRNAs encoding aquaporins are present during murine preimplantation development.

    Get PDF
    The present study was conducted to investigate the mechanisms underlying fluid movement across the trophectoderm during blastocyst formation by determining whether aquaporins (AQPs) are expressed during early mammalian development. AQPs belong to a family of major intrinsic membrane proteins and function as molecular water channels that allow water to flow rapidly across plasma membranes in the direction of osmotic gradients. Ten different AQPs have been identified to date. Murine preimplantation stage embryos were flushed from the oviducts and uteri of superovulated CD1 mice. Reverse transcription-polymerase chain reaction (RT-PCR) methods employing primer sets designed to amplify conserved sequences of AQPs (1-9) were applied to murine embryo cDNA samples. PCR reactions were conducted for up to 40 cycles involving denaturation of DNA hybrids at 95 degrees C, primer annealing at 52-60 degrees C and extension at 72 degrees C. PCR products were separated on 2% agarose gels and were stained with ethidium bromide. AQP PCR product identity was confirmed by sequence analysis. mRNAs encoding AQPs 1, 3, 5, 6, 7, and 9 were detected in murine embryos from the one-cell stage up to the blastocyst stage. AQP 8 mRNAs were not detected in early cleavage stages but were present in morula and blastocyst stage embryos. The results were confirmed in experimental replicates applied to separate embryo pools of each embryo stage. These results demonstrate that transcripts encoding seven AQP gene products are detectable during murine preimplantation development. These findings predict that AQPs may function as conduits for trophectoderm fluid transport during blastocyst formation

    Обоснование актуальности использования в трансмиссии геохода эксцентриково-циклоидального зацепления

    Get PDF
    Рассматривается состояние вопроса по темпам формирования подземного пространства в России. Проводится анализ недостатков имеющегося проходческого оборудования (щиты, комбайны). Отмечается, что перспективным способом проведения горных выработок является геовинчестерная технология, базовым функциональным элементом которой является геоход. Утверждается, что одной из ключевых систем геохода, определяющей его работоспособность, является трансмиссия. Отмечается, что реализованная в настоящее время в опытном образце геохода трансмиссия с гидроцилиндрами, имеет, как свои достоинства, так и недостатки. Это не позволяет считать трансмиссию с гидроцилиндрами оптимальным решением для её использования, при разработке геоходов нового поколения. Проводится обзор различных видов зубчатых зацеплений и делаются выводы о перспективности их применения в трансмиссии геохода
    corecore