481 research outputs found
Measurement of heavy-hole spin dephasing in (InGa)As quantum dots
We measure the spin dephasing of holes localized in self-assembled (InGa)As
quantum dots by spin noise spectroscopy. The localized holes show a distinct
hyperfine interaction with the nuclear spin bath despite the p-type symmetry of
the valence band states. The experiments reveal a short spin relaxation time
{\tau}_{fast}^{hh} of 27 ns and a second, long spin relaxation time
{\tau}_{slow}^{hh} which exceeds the latter by more than one order of
magnitude. The two times are attributed to heavy hole spins aligned
perpendicular and parallel to the stochastic nuclear magnetic field. Intensity
dependent measurements and numerical simulations reveal that the long
relaxation time is still obscured by light absorption, despite low laser
intensity and large detuning. Off-resonant light absorption causes a
suppression of the spin noise signal due to the creation of a second hole
entailing a vanishing hole spin polarization.Comment: accepted to be published in AP
Microstructural changes in the reward system are associated with post-stroke depression
Background: Studies of lesion location have been unsuccessful in identifying mappings between single brain regions and post-stroke depression (PSD). Based on studies implicating the reward system in major depressive disorder without stroke, we investigated structural correlates within this system and their associations with PSD. Methods: The study enrolled 16 healthy controls, 12 stroke patients with PSD and 34 stroke patients free of PSD. Participants underwent 3T structural and diffusion MRI. Graph theoretical measures were used to examine global topology and whole-brain connectome analyses were employed to assess differences in the interregional connectivity matrix between groups. Structural correlates specific to the reward system were examined from grey matter volumes and by reconstructing its main white matter pathways, namely the medial forebrain bundle and cingulum connections, using deterministic tractography. Fractional anisotropy (FA) was derived as a measure of microstructural organization, and extracellular free-water (FW) as a possible proxy of neuroinflammation. Results: Subnetworks of decreased FA-weighted and increased FW-weighted connectivity were observed in patients with PSD relative to healthy controls. These networks subsumed the majority of regions constituting the reward system. Within the reward system, FA and FW of major connection pathways and grey matter volume were collectively predictive of PSD, explaining 37.8% of the variance in depression severity. Conclusions: PSD is associated with grey matter volume loss, reduced FA and increased extracellular FW in the reward system, similar to features observed in major depression without stroke. Structural characterization of the reward system is a promising biomarker of vulnerability to depression after stroke
Colored dissolved organic matter in shallow estuaries : relationships between carbon sources and light attenuation
© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 13 (2016): 583-595, doi:10.5194/bg-13-583-2016.Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM–fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m−1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from −19.7 to −26.1 ‰ and −20.8 to −26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of DOC source to CDOM : fDOM absorption ratios at each site demonstrates the relationship between source and optical properties. Samples with 13C-enriched carbon isotope values, indicating a greater contribution from marsh organic material, had higher CDOM : fDOM absorption ratios than samples with greater contribution from terrestrial organic material. Applying a uniform CDOM : fDOM absorption ratio and spectral slope within a given estuary yields errors in modeled light attenuation ranging from 11 to 33 % depending on estuary. The application of a uniform absorption ratio across all estuaries doubles this error. This study demonstrates that light attenuation coefficients for CDOM based on continuous fDOM records are highly dependent on the source of DOM present in the estuary. Thus, light attenuation models for estuaries would be improved by quantification of CDOM absorption and DOM source identification.Funding was provided by the Woods Hole
Oceanographic Institution Summer Student Fellowship Program
and the USGS Coastal and Marine Geology Program
Geostatistical analysis of mesoscale spatial variability and error in SeaWiFS and MODIS/Aqua global ocean color data
© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 123 (2018): 22–39, doi:10.1002/2017JC013023.Mesoscale (10–300 km, weeks to months) physical variability strongly modulates the structure and dynamics of planktonic marine ecosystems via both turbulent advection and environmental impacts upon biological rates. Using structure function analysis (geostatistics), we quantify the mesoscale biological signals within global 13 year SeaWiFS (1998–2010) and 8 year MODIS/Aqua (2003–2010) chlorophyll a ocean color data (Level-3, 9 km resolution). We present geographical distributions, seasonality, and interannual variability of key geostatistical parameters: unresolved variability or noise, resolved variability, and spatial range. Resolved variability is nearly identical for both instruments, indicating that geostatistical techniques isolate a robust measure of biophysical mesoscale variability largely independent of measurement platform. In contrast, unresolved variability in MODIS/Aqua is substantially lower than in SeaWiFS, especially in oligotrophic waters where previous analysis identified a problem for the SeaWiFS instrument likely due to sensor noise characteristics. Both records exhibit a statistically significant relationship between resolved mesoscale variability and the low-pass filtered chlorophyll field horizontal gradient magnitude, consistent with physical stirring acting on large-scale gradient as an important factor supporting observed mesoscale variability. Comparable horizontal length scales for variability are found from tracer-based scaling arguments and geostatistical decorrelation. Regional variations between these length scales may reflect scale dependence of biological mechanisms that also create variability directly at the mesoscale, for example, enhanced net phytoplankton growth in coastal and frontal upwelling and convective mixing regions. Global estimates of mesoscale biophysical variability provide an improved basis for evaluating higher resolution, coupled ecosystem-ocean general circulation models, and data assimilation.NASA's Ocean Biology and Biogeochemistry Grant Numbers: NNG05GG30G, NNG05GR34G, NNX14AM36G, NNX14AL86G, NNX15AE65G;
Ocean Biology Processing Group (OBPG) at NASA's Goddard Space Flight Cente
Electron g-Factor Anisotropy in Symmetric (110)-oriented GaAs Quantum Wells
We demonstrate by spin quantum beat spectroscopy that in undoped symmetric
(110)-oriented GaAs/AlGaAs single quantum wells even a symmetric spatial
envelope wavefunction gives rise to an asymmetric in-plane electron
Land\'e-g-factor. The anisotropy is neither a direct consequence of the
asymmetric in-plane Dresselhaus splitting nor of the asymmetric Zeeman
splitting of the hole bands but is a pure higher order effect that exists as
well for diamond type lattices. The measurements for various well widths are
very well described within 14 x 14 band k.p theory and illustrate that the
electron spin is an excellent meter variable to map out the internal -otherwise
hidden- symmetries in two dimensional systems. Fourth order perturbation theory
yields an analytical expression for the strength of the g-factor anisotropy,
providing a qualitative understanding of the observed effects
Highly anisotropic g-factor of two-dimensional hole systems
Coupling the spin degree of freedom to the anisotropic orbital motion of
two-dimensional (2D) hole systems gives rise to a highly anisotropic Zeeman
splitting with respect to different orientations of an in-plane magnetic field
B relative to the crystal axes. This mechanism has no analogue in the bulk band
structure. We obtain good, qualitative agreement between theory and
experimental data, taken in GaAs 2D hole systems grown on (113) substrates,
showing the anisotropic depopulation of the upper spin subband as a function of
in-plane B.Comment: 4 pages, 3 figure
Spin injection through the depletion layer: a theory of spin-polarized p-n junctions and solar cells
A drift-diffusion model for spin-charge transport in spin-polarized {\it p-n}
junctions is developed and solved numerically for a realistic set of material
parameters based on GaAs. It is demonstrated that spin polarization can be
injected through the depletion layer by both minority and majority carriers,
making all-semiconductor devices such as spin-polarized solar cells and bipolar
transistors feasible. Spin-polarized {\it p-n} junctions allow for
spin-polarized current generation, spin amplification, voltage control of spin
polarization, and a significant extension of spin diffusion range.Comment: 4 pages, 3 figure
Longitudinal spin transport in diluted magnetic semiconductor superlattices: the effect of the giant Zeeman splitting
Longitudinal spin transport in diluted magnetic semiconductor superlattices
is investigated theoretically. The longitudinal magnetoconductivity (MC) in
such systems exhibits an oscillating behavior as function of an external
magnetic field. In the weak magnetic field region the giant Zeeman splitting
plays a dominant role which leads to a large negative magnetoconductivity. In
the strong magnetic field region the MC exhibits deep dips with increasing
magnetic field. The oscillating behavior is attributed to the interplay between
the discrete Landau levels and the Fermi surface. The decrease of the MC at low
magnetic field is caused by the exchange interaction between the electron
in the conduction band and the magnetic ions.Comment: 6 pages, 9 figures, submitted to Phys. Rev.
Expanding NEON biodiversity surveys with new instrumentation and machine learning approaches
A core goal of the National Ecological Observatory Network (NEON) is to measure changes in biodiversity across the 30-yr horizon of the network. In contrast to NEON’s extensive use of automated instruments to collect environmental data, NEON’s biodiversity surveys are almost entirely conducted using traditional human-centric field methods. We believe that the combination of instrumentation for remote data collection and machine learning models to process such data represents an important opportunity for NEON to expand the scope, scale, and usability of its biodiversity data collection while potentially reducing long-term costs. In this manuscript, we first review the current status of instrument-based biodiversity surveys within the NEON project and previous research at the intersection of biodiversity, instrumentation, and machine learning at NEON sites. We then survey methods that have been developed at other locations but could potentially be employed at NEON sites in future. Finally, we expand on these ideas in five case studies that we believe suggest particularly fruitful future paths for automated biodiversity measurement at NEON sites: acoustic recorders for sound-producing taxa, camera traps for medium and large mammals, hydroacoustic and remote imagery for aquatic diversity, expanded remote and ground-based measurements for plant biodiversity, and laboratory-based imaging for physical specimens and samples in the NEON biorepository. Through its data science-literate staff and user community, NEON has a unique role to play in supporting the growth of such automated biodiversity survey methods, as well as demonstrating their ability to help answer key ecological questions that cannot be answered at the more limited spatiotemporal scales of human-driven surveys
Rashba precession in quantum wires with interaction
Rashba precession of spins moving along a one-dimensional quantum channel is
calculated, accounting for Coulomb interactions. The Tomonaga--Luttinger model
is formulated in the presence of spin-orbit scattering and solved by
Bosonization. Increasing interaction strength at decreasing carrier density is
found to {\sl enhance} spin precession and the nominal Rashba parameter due to
the decreasing spin velocity compared with the Fermi velocity. This result can
elucidate the observed pronounced changes of the spin splitting on applied gate
voltages which are estimated to influence the interface electric field in
heterostructures only little.Comment: now replaced by published versio
- …