1,111 research outputs found
Measurement of time differences between luminous events Patent
Mechanism for measuring nanosecond time differences between luminous events using streak camer
Fast opening diaphragm Patent
Magnetically opened diaphragm design with camera shutter and expansion tube application
Suspended particulate matter in the Chesapeake Bay entrance and adjacent shelf waters
Approximately 400 samples were collected from the mouth of the Chesapeake Bay for various analyses, including 138 for suspended solids. Characteristics of suspended solids that were analyzed included: total suspended matter; total suspended inorganics, total suspended organics; percent organics; particle size distribution; and presence or absence of 11 of the most prominent particle types
Socioeconomic impact of restless legs syndrome and inadequate restless legs syndrome management across European settings
Restless legs syndrome (RLS) is one of the most common neurological disorders. It describes an irresistible urge to move the legs, mostly manifested in the evening and at night, which can lead to severe sleep disturbance. As part of the European Brain Council (EBC)-led Value-of-Treatment project, this study aimed at capturing the socioeconomic impact of RLS related to the inadequate diagnosis and treatment across different European healthcare settings. The economic burden of RLS was estimated using the published EBC framework of analysis in three separate European Union healthcare systems (France, Germany, and Italy). The RLS care pathway was mapped to identify the unmet needs of patients. Based on specific patient stories, the economic impact of correctly diagnosing RLS and changing between inadequate and target treatment was calculated using appropriate scenario analysis. RLS proved to be a significant personal and social burden, when epidemiological data, high prevalence of RLS, and its need for treatment are combined. By looking at the savings emerging from the provision of optimal care management (timely and correct diagnosis, evidence-based therapy, avoidance of therapy-related complications such as augmentation), the authors foresee substantial economic savings with the achievement of adequate diagnosis and treatment of RLS. Education about RLS is urgently needed for all subspecialties involved in RLS patient care as well as the general public. Equally important, the search for new causal treatment strategies should be intensified to reduce suffering and substantial societal cost
A Cosmic Census of Radio Pulsars with the SKA
The Square Kilometre Array (SKA) will make ground breaking discoveries in
pulsar science. In this chapter we outline the SKA surveys for new pulsars, as
well as how we will perform the necessary follow-up timing observations. The
SKA's wide field-of-view, high sensitivity, multi-beaming and sub-arraying
capabilities, coupled with advanced pulsar search backends, will result in the
discovery of a large population of pulsars. These will enable the SKA's pulsar
science goals (tests of General Relativity with pulsar binary systems,
investigating black hole theorems with pulsar-black hole binaries, and direct
detection of gravitational waves in a pulsar timing array). Using SKA1-MID and
SKA1-LOW we will survey the Milky Way to unprecedented depth, increasing the
number of known pulsars by more than an order of magnitude. SKA2 will
potentially find all the Galactic radio-emitting pulsars in the SKA sky which
are beamed in our direction. This will give a clear picture of the birth
properties of pulsars and of the gravitational potential, magnetic field
structure and interstellar matter content of the Galaxy. Targeted searches will
enable detection of exotic systems, such as the ~1000 pulsars we infer to be
closely orbiting Sgr A*, the supermassive black hole in the Galactic Centre. In
addition, the SKA's sensitivity will be sufficient to detect pulsars in local
group galaxies. To derive the spin characteristics of the discoveries we will
perform live searches, and use sub-arraying and dynamic scheduling to time
pulsars as soon as they are discovered, while simultaneously continuing survey
observations. The large projected number of discoveries suggests that we will
uncover currently unknown rare systems that can be exploited to push the
boundaries of our understanding of astrophysics and provide tools for testing
physics, as has been done by the pulsar community in the past.Comment: 20 pages, 7 figures, to be published in: "Advancing Astrophysics with
the Square Kilometre Array", Proceedings of Science, PoS(AASKA14)04
Critical temperature for kaon condensation in color-flavor locked quark matter
We study the behavior of Goldstone bosons in color-flavor-locked (CFL) quark
matter at nonzero temperature. Chiral symmetry breaking in this phase of cold
and dense matter gives rise to pseudo-Goldstone bosons, the lightest of these
being the charged and neutral kaons K^+ and K^0. At zero temperature,
Bose-Einstein condensation of the kaons occurs. Since all fermions are gapped,
this kaon condensed CFL phase can, for energies below the fermionic energy gap,
be described by an effective theory for the bosonic modes. We use this
effective theory to investigate the melting of the condensate: we determine the
temperature-dependent kaon masses self-consistently using the two-particle
irreducible effective action, and we compute the transition temperature for
Bose-Einstein condensation. Our results are important for studies of transport
properties of the kaon condensed CFL phase, such as bulk viscosity.Comment: 24 pages, 8 figures, v2: new section about effect of electric
neutrality on critical temperature added; references added; version to appear
in J.Phys.
Photon emission from bare quark stars
We investigate the photon emission from the electrosphere of a quark star. It
is shown that at temperatures T\sim 0.1-1 MeV the dominating mechanism is the
bremsstrahlung due to bending of electron trajectories in the mean Coulomb
field of the electrosphere. The radiated energy for this mechanism is much
larger than that for the Bethe-Heitler bremsstrahlung. The energy flux from the
mean field bremsstrahlung exceeds the one from the tunnel e^{+}e^{-} pair
creation as well. We demonstrate that the LPM suppression of the photon
emission is negligible.Comment: 35 pages, 5 figure
Distinctive waves of innate immune response in the retina in experimental autoimmune encephalomyelitis
Neurodegeneration mediates neurological disability in inflammatory demyelinating diseases of the CNS. The role of innate immune cells in mediating this damage has remained controversial with evidence for destructive and protective effects. This has complicated efforts to develop treatment. The time sequence and dynamic evolution of the opposing functions are especially unclear. Given limits of in vivo monitoring in human diseases such as multiple sclerosis (MS), animal models are warranted to investigate the association and timing of innate immune activation with neurodegeneration. Using noninvasive in vivo retinal imaging of experimental autoimmune encephalitis (EAE) in CX3CR1GFP/+–knock-in mice followed by transcriptional profiling, we are able to show 2 distinct waves separated by a marked reduction in the number of innate immune cells and change in cell morphology. The first wave is characterized by an inflammatory phagocytic phenotype preceding the onset of EAE, whereas the second wave is characterized by a regulatory, antiinflammatory phenotype during the chronic stage. Additionally, the magnitude of the first wave is associated with neuronal loss. Two transcripts identified — growth arrest–specific protein 6 (GAS6) and suppressor of cytokine signaling 3 (SOCS3) — might be promising targets for enhancing protective effects of microglia in the chronic phase after initial injury
- …