149 research outputs found
Tropomodulin 1 directly controls thin filament length in both wild-type and tropomodulin 4-deficient skeletal muscle
The sarcomeric tropomodulin (Tmod) isoforms Tmod1 and Tmod4 cap thin filament pointed ends and functionally interact with the leiomodin (Lmod) isoforms Lmod2 and Lmod3 to control myofibril organization, thin filament lengths, and actomyosin crossbridge formation in skeletal muscle fibers. Here, we show that Tmod4 is more abundant than Tmod1 at both the transcript and protein level in a variety of muscle types, but the relative abundances of sarcomeric Tmods are muscle specific. We then generate Tmod4(−/−) mice, which exhibit normal thin filament lengths, myofibril organization, and skeletal muscle contractile function owing to compensatory upregulation of Tmod1, together with an Lmod isoform switch wherein Lmod3 is downregulated and Lmod2 is upregulated. However, RNAi depletion of Tmod1 from either wild-type or Tmod4(−/−) muscle fibers leads to thin filament elongation by ∼15%. Thus, Tmod1 per se, rather than total sarcomeric Tmod levels, controls thin filament lengths in mouse skeletal muscle, whereas Tmod4 appears to be dispensable for thin filament length regulation. These findings identify Tmod1 as the key direct regulator of thin filament length in skeletal muscle, in both adult muscle homeostasis and in developmentally compensated contexts
Coronary plaque redistribution after stent implantation is determined by lipid composition: A NIRS-IVUS analysis
Background: The composition of plaque impacts the results of stenting. The following study evaluated plaque redistribution related to stent implantation using combined near-infrared spectroscopy and intravascular ultrasound (NIRS-IVUS) imaging.
Methods: The present study included 49 patients (mean age 66 ± 11 years, 75% males) presenting with non-ST elevation myocardial infarction (8%), unstable angina (49%) and stable coronary artery disease (43%). The following parameters were analyzed: mean plaque volume (MPV, mm3), plaque burden (PB, %), remodeling index (RI), and maximal lipid core burden index in a 4 mm segment (maxLCBI4mm). High-lipid burden lesions (HLB) were defined as by maxLCBI4mm > 265 with positive RI. Otherwise plaques were defined as low-lipid burden lesions (LLB). Measurements were done in the target lesion and in 4 mm edges of the stent before and after stent implantation.
Results: MPV and maxLCBI4mm decreased in both HLB (MPV 144.70 [80.47, 274.25] vs. 97.60 [56.82, 223.45]; maxLCBI4mm: 564.11 ± 166.82 vs. 258.11 ± 234.24, p = 0.004) and LLB (MPV: 124.50 [68.00, 186.20] vs. 101.10 [67.87, 165.95]; maxLCBI4mm: 339.07 ± 268.22 vs. 124.60 ± 160.96, p < 0.001), but MPV decrease was greater in HLB (28.00 [22.60, 57.10] vs. 13.50 [1.50, 28.84], p = 0.019). Only at the proximal stent edge of LLB, maxLCBI4mm decreased (34 [0, 207] vs. 0 [0, 45], p = 0.049) and plaque burden increased (45.48 [40.34, 51.55] vs. 51.75 [47.48, 55.76], p = 0.030).
Conclusions: NIRS-IVUS defined HLB characterized more significant decreases in plaque volume by stenting. Plaque redistribution to the proximal edge of the implanted stent occurred only in LLB
Factors Underlying the Early Limb Muscle Weakness in Acute Quadriplegic Myopathy Using an Experimental ICU Porcine Model
The basic mechanisms underlying acquired generalized muscle weakness and paralysis in critically ill patients remain poorly understood and may be related to prolonged mechanical ventilation/immobilization (MV) or to other triggering factors such as sepsis, systemic corticosteroid (CS) treatment and administration of neuromuscular blocking agents (NMBA). The present study aims at exploring the relative importance of these factors by using a unique porcine model. Piglets were all exposed to MV together with different combinations of endotoxin-induced sepsis, CS and NMBA for five days. Peroneal motor nerve conduction velocity and amplitude of the compound muscle action potential (CMAP) as well as biceps femoris muscle biopsy specimens were obtained immediately after anesthesia on the first day and at the end of the 5-day experimental period. Results showed that peroneal nerve motor conduction velocity is unaffected whereas the size of the CMAP decreases independently of the type of intervention, in all groups after 5 days. Otherwise, despite a preserved size, muscle fibre specific force (maximum force normalized to cross-sectional area) decreased dramatically for animals exposed to MV in combination with CS or/and sepsis. These results suggest that the rapid declines in CMAP amplitude and in force generation capacity are triggered by independent mechanisms with significant clinical and therapeutic implications
Diaphragm Muscle Weakness in an Experimental Porcine Intensive Care Unit Model
In critically ill patients, mechanisms underlying diaphragm muscle remodeling and resultant dysfunction contributing to weaning failure remain unclear. Ventilator-induced modifications as well as sepsis and administration of pharmacological agents such as corticosteroids and neuromuscular blocking agents may be involved. Thus, the objective of the present study was to examine how sepsis, systemic corticosteroid treatment (CS) and neuromuscular blocking agent administration (NMBA) aggravate ventilator-related diaphragm cell and molecular dysfunction in the intensive care unit. Piglets were exposed to different combinations of mechanical ventilation and sedation, endotoxin-induced sepsis, CS and NMBA for five days and compared with sham-operated control animals. On day 5, diaphragm muscle fibre structure (myosin heavy chain isoform proportion, cross-sectional area and contractile protein content) did not differ from controls in any of the mechanically ventilated animals. However, a decrease in single fibre maximal force normalized to cross-sectional area (specific force) was observed in all experimental piglets. Therefore, exposure to mechanical ventilation and sedation for five days has a key negative impact on diaphragm contractile function despite a preservation of muscle structure. Post-translational modifications of contractile proteins are forwarded as one probable underlying mechanism. Unexpectedly, sepsis, CS or NMBA have no significant additive effects, suggesting that mechanical ventilation and sedation are the triggering factors leading to diaphragm weakness in the intensive care unit
Nebulin nemaline myopathy recapitulated in a compound heterozygous mouse model with both a missense and a nonsense mutation in Neb
Nemaline myopathy (NM) caused by mutations in the gene encoding nebulin (NEB) accounts for at least 50% of all NM cases worldwide, representing a significant disease burden. Most NEB-NM patients have autosomal recessive disease due to a compound heterozygous genotype. Of the few murine models developed for NEB-NM, most are Neb knockout models rather than harbouring Neb mutations. Additionally, some models have a very severe phenotype that limits their application for evaluating disease progression and potential therapies. No existing murine models possess compound heterozygous Neb mutations that reflect the genotype and resulting phenotype present in most patients. We aimed to develop a murine model that more closely matched the underlying genetics of NEB-NM, which could assist elucidation of the pathogenetic mechanisms underlying the disease. Here, we have characterised a mouse strain with compound heterozygous Neb mutations; one missense (p.Tyr2303His), affecting a conserved actin-binding site and one nonsense mutation (p.Tyr935*), introducing a premature stop codon early in the protein. Our studies reveal that this compound heterozygous model, Neb(Y2303H, Y935X), has striking skeletal muscle pathology including nemaline bodies. In vitro whole muscle and single myofibre physiology studies also demonstrate functional perturbations. However, no reduction in lifespan was noted. Therefore, Neb(Y2303H,Y935X) mice recapitulate human NEB-NM and are a much needed addition to the NEB-NM mouse model collection. The moderate phenotype also makes this an appropriate model for studying NEB-NM pathogenesis, and could potentially be suitable for testing therapeutic applications.Peer reviewe
Nebulin nemaline myopathy recapitulated in a compound heterozygous mouse model with both a missense and a nonsense mutation in Neb
Nemaline myopathy (NM) caused by mutations in the gene encoding nebulin (NEB) accounts for at least 50% of all NM cases worldwide, representing a significant disease burden. Most NEB-NM patients have autosomal recessive disease due to a compound heterozygous genotype. Of the few murine models developed for NEB-NM, most are Neb knockout models rather than harbouring Neb mutations. Additionally, some models have a very severe phenotype that limits their application for evaluating disease progression and potential therapies. No existing murine models possess compound heterozygous Neb mutations that reflect the genotype and resulting phenotype present in most patients. We aimed to develop a murine model that more closely matched the underlying genetics of NEB-NM, which could assist elucidation of the pathogenetic mechanisms underlying the disease. Here, we have characterised a mouse strain with compound heterozygous Neb mutations; one missense (p.Tyr2303His), affecting a conserved actin-binding site and one nonsense mutation (p.Tyr935*), introducing a premature stop codon early in the protein. Our studies reveal that this compound heterozygous model, Neb(Y2303H, Y935X), has striking skeletal muscle pathology including nemaline bodies. In vitro whole muscle and single myofibre physiology studies also demonstrate functional perturbations. However, no reduction in lifespan was noted. Therefore, Neb(Y2303H,Y935X) mice recapitulate human NEB-NM and are a much needed addition to the NEB-NM mouse model collection. The moderate phenotype also makes this an appropriate model for studying NEB-NM pathogenesis, and could potentially be suitable for testing therapeutic applications.Peer reviewe
The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass
Although the canonical transforming growth factor β signaling pathway represses skeletal muscle growth and promotes muscle wasting, a role in muscle for the parallel bone morphogenetic protein (BMP) signaling pathway has not been defined. We report, for the first time, that the BMP pathway is a positive regulator of muscle mass. Increasing the expression of BMP7 or the activity of BMP receptors in muscles induced hypertrophy that was dependent on Smad1/5-mediated activation of mTOR signaling. In agreement, we observed that BMP signaling is augmented in models of muscle growth. Importantly, stimulation of BMP signaling is essential for conservation of muscle mass after disruption of the neuromuscular junction. Inhibiting the phosphorylation of Smad1/5 exacerbated denervation-induced muscle atrophy via an HDAC4-myogenin–dependent process, whereas increased BMP–Smad1/5 activity protected muscles from denervation-induced wasting. Our studies highlight a novel role for the BMP signaling pathway in promoting muscle growth and inhibiting muscle wasting, which may have significant implications for the development of therapeutics for neuromuscular disorders
Rationale and design of EXPLORE: a randomized, prospective, multicenter trial investigating the impact of recanalization of a chronic total occlusion on left ventricular function in patients after primary percutaneous coronary intervention for acute ST-elevation myocardial infarction
<p>Abstract</p> <p>Background</p> <p>In the setting of primary percutaneous coronary intervention, patients with a chronic total occlusion in a non-infarct related artery were recently identified as a high-risk subgroup. It is unclear whether ST-elevation myocardial infarction patients with a chronic total occlusion in a non-infarct related artery should undergo additional percutaneous coronary intervention of the chronic total occlusion on top of optimal medical therapy shortly after primary percutaneous coronary intervention. Possible beneficial effects include reduction in adverse left ventricular remodeling and preservation of global left ventricular function and improved clinical outcome during future coronary events.</p> <p>Methods/Design</p> <p>The Evaluating Xience V and left ventricular function in Percutaneous coronary intervention on occLusiOns afteR ST-Elevation myocardial infarction (EXPLORE) trial is a randomized, prospective, multicenter, two-arm trial with blinded evaluation of endpoints. Three hundred patients after primary percutaneous coronary intervention for ST-elevation myocardial infarction with a chronic total occlusion in a non-infarct related artery are randomized to either elective percutaneous coronary intervention of the chronic total occlusion within seven days or standard medical treatment. When assigned to the invasive arm, an everolimus-eluting coronary stent is used. Primary endpoints are left ventricular ejection fraction and left ventricular end-diastolic volume assessed by cardiac Magnetic Resonance Imaging at four months. Clinical follow-up will continue until five years.</p> <p>Discussion</p> <p>The ongoing EXPLORE trial is the first randomized clinical trial powered to investigate whether recanalization of a chronic total occlusion in a non-infarct related artery after primary percutaneous coronary intervention for ST-elevation myocardial infarction results in a better preserved residual left ventricular ejection fraction, reduced end-diastolic volume and enhanced clinical outcome.</p> <p>Trial registration</p> <p>trialregister.nl NTR1108.</p
Muscle wasting and the temporal gene expression pattern in a novel rat intensive care unit model
<p>Abstract</p> <p>Background</p> <p>Acute quadriplegic myopathy (AQM) or critical illness myopathy (CIM) is frequently observed in intensive care unit (ICU) patients. To elucidate duration-dependent effects of the ICU intervention on molecular and functional networks that control the muscle wasting and weakness associated with AQM, a gene expression profile was analyzed at time points varying from 6 hours to 14 days in a unique experimental rat model mimicking ICU conditions, i.e., post-synaptically paralyzed, mechanically ventilated and extensively monitored animals.</p> <p>Results</p> <p>During the observation period, 1583 genes were significantly up- or down-regulated by factors of two or greater. A significant temporal gene expression pattern was constructed at short (6 h-4 days), intermediate (5-8 days) and long (9-14 days) durations. A striking early and maintained up-regulation (6 h-14d) of muscle atrogenes (muscle ring-finger 1/tripartite motif-containing 63 and F-box protein 32/atrogin-1) was observed, followed by an up-regulation of the proteolytic systems at intermediate and long durations (5-14d). Oxidative stress response genes and genes that take part in amino acid catabolism, cell cycle arrest, apoptosis, muscle development, and protein synthesis together with myogenic factors were significantly up-regulated from 5 to 14 days. At 9-14 d, genes involved in immune response and the caspase cascade were up-regulated. At 5-14d, genes related to contractile (myosin heavy chain and myosin binding protein C), regulatory (troponin, tropomyosin), developmental, caveolin-3, extracellular matrix, glycolysis/gluconeogenesis, cytoskeleton/sarcomere regulation and mitochondrial proteins were down-regulated. An activation of genes related to muscle growth and new muscle fiber formation (increase of myogenic factors and JunB and down-regulation of myostatin) and up-regulation of genes that code protein synthesis and translation factors were found from 5 to 14 days.</p> <p>Conclusions</p> <p>Novel temporal patterns of gene expression have been uncovered, suggesting a unique, coordinated and highly complex mechanism underlying the muscle wasting associated with AQM in ICU patients and providing new target genes and avenues for intervention studies.</p
- …