59 research outputs found

    Neural progenitor cells from an adult patient with fragile X syndrome

    Get PDF
    BACKGROUND: Currently, there is no adequate animal model to study the detailed molecular biochemistry of fragile X syndrome, the leading heritable form of mental impairment. In this study, we sought to establish the use of immature neural cells derived from adult tissues as a novel model of fragile X syndrome that could be used to more fully understand the pathology of this neurogenetic disease. METHODS: By modifying published methods for the harvest of neural progenitor cells from the post-mortem human brain, neural cells were successfully harvested and grown from post-mortem brain tissue of a 25-year-old adult male with fragile X syndrome, and from brain tissue of a patient with no neurological disease. RESULTS: The cultured fragile X cells displayed many of the characteristics of neural progenitor cells, including nestin and CD133 expression, as well as the biochemical hallmarks of fragile X syndrome, including CGG repeat expansion and a lack of FMRP expression. CONCLUSION: The successful production of neural cells from an individual with fragile X syndrome opens a new avenue for the scientific study of the molecular basis of this disorder, as well as an approach for studying the efficacy of new therapeutic agents

    Mavoglurant in Fragile X Syndrome:Results of two open-label, extension trials in adults and adolescents

    Get PDF
    Fragile X syndrome (FXS) is the most common monogenic cause of inherited intellectual and developmental disabilities. Mavoglurant, a selective metabotropic glutamate receptor subtype-5 antagonist, has shown positive neuronal and behavioral effects in preclinical studies, but failed to demonstrate any behavioral benefits in two 12-week, randomized, placebo-controlled, double-blind, phase IIb studies in adults and adolescents with FXS. Here we report the long-term safety (primary endpoint) and efficacy (secondary endpoint) results of the open-label extensions. Adolescent (n = 119, aged 12-19 years) and adult (n = 148, aged 18-45 years) participants received up to 100 mg bid mavoglurant for up to 34 months. Both extension studies were terminated prematurely due to lack of proven efficacy in the core studies. Mavoglurant was well tolerated with no new safety signal. Five percent of adults and 16.9 percent of adolescents discontinued treatment due to adverse events. Gradual and consistent behavioral improvements as measured by the ABC-C <sub>FX</sub> scale were observed, which were numerically superior to those seen in the placebo arm of the core studies. These two extension studies confirm the long-term safety of mavoglurant in FXS, but further investigations are required to determine whether and under which conditions the significant preclinical results obtained with mGluR5 inhibition can translate to humans

    Associated features in females with an FMR1 premutation

    Get PDF
    Abstract Changes in the fragile X mental retardation 1 gene (FMR1) have been associated with specific phenotypes, most specifically those of fragile X syndrome (FXS), fragile X tremor/ataxia syndrome (FXTAS), and fragile X primary ovarian insufficiency (FXPOI). Evidence of increased risk for additional medical, psychiatric, and cognitive features and conditions is now known to exist for individuals with a premutation, although some features have been more thoroughly studied than others. This review highlights the literature on medical, reproductive, cognitive, and psychiatric features, primarily in females, that have been suggested to be associated with changes in the FMR1 gene. Based on this review, each feature is evaluated with regard to the strength of evidence of association with the premutation. Areas of need for additional focused research and possible intervention strategies are suggested

    Rapid PCR analysis of the St14 (DXS52) VNTR.

    No full text
    Introduction: Some segments of the human genome exhibit polymorphism due to a variable number of tandem repeats (VNTR). The enzymatic amplification of VNTR loci can allow for rapid analysis and discrimination of closely sized alleles. We report a PCR-based method for analysis of the highl
    corecore