31 research outputs found
"Beam `a la carte": laser heater shaping for attosecond pulses in a multiplexed x-ray free-electron laser
Electron beam shaping allows the control of the temporal properties of x-ray
free-electron laser pulses from femtosecond to attosecond timescales. Here we
demonstrate the use of a laser heater to shape electron bunches and enable the
generation of attosecond x-ray pulses. We demonstrate that this method can be
applied in a selective way, shaping a targeted subset of bunches while leaving
the remaining bunches unchanged. This experiment enables the delivery of shaped
x-ray pulses to multiple undulator beamlines, with pulse properties tailored to
specialized scientific applications
Photo-ionization and fragmentation of Sc3N@C80 following excitation above the Sc K-edge
We have investigated the ionization and fragmentation of a metallo-endohedral fullerene, Sc3N@C80, using ultrashort (10 fs) x-ray pulses. Following selective ionization of a Sc (1s) electron (hν = 4.55 keV), an Auger cascade leads predominantly to either a vibrationally cold multiply charged parent molecule or multifragmentation of the carbon cage following a phase transition. In contrast to previous studies, no intermediate regime of C2 evaporation from the carbon cage is observed. A time-delayed, hard x-ray pulse (hν = 5.0 keV) was used to attempt to probe the electron transfer dynamics between the encapsulated Sc species and the carbon cage. A small but significant change in the intensity of Sc-containing fragment ions and coincidence counts for a delay of 100 fs compared to 0 fs, as well as an increase in the yield of small carbon fragment ions, may be indicative of incomplete charge transfer from the carbon cage on the sub-100 fs time scale
Attosecond Delays in X-ray Molecular Ionization
The photoelectric effect is not truly instantaneous, but exhibits attosecond
delays that can reveal complex molecular dynamics. Sub-femtosecond duration
light pulses provide the requisite tools to resolve the dynamics of
photoionization. Accordingly, the past decade has produced a large volume of
work on photoionization delays following single photon absorption of an extreme
ultraviolet (XUV) photon. However, the measurement of time-resolved core-level
photoionization remained out of reach. The required x-ray photon energies
needed for core-level photoionization were not available with attosecond
tabletop sources. We have now measured the x-ray photoemission delay of
core-level electrons, and here report unexpectedly large delays, ranging up to
700 attoseconds in NO near the oxygen K-shell threshold. These measurements
exploit attosecond soft x-ray pulses from a free-electron laser (XFEL) to scan
across the entire region near the K-shell threshold. Furthermore, we find the
delay spectrum is richly modulated, suggesting several contributions including
transient trapping of the photoelectron due to shape resonances, collisions
with the Auger-Meitner electron that is emitted in the rapid non-radiative
relaxation of the molecule, and multi-electron scattering effects. The results
demonstrate how x-ray attosecond experiments, supported by comprehensive
theoretical modelling, can unravel the complex correlated dynamics of
core-level photoionization
The Time-resolved Atomic, Molecular and Optical Science Instrument at the Linac Coherent Light Source
The newly constructed Time-resolved atomic, Molecular and Optical science
instrument (TMO), is configured to take full advantage of both linear
accelerators at SLAC National Accelerator Laboratory, the copper accelerator
operating at a repetition rate of 120 Hz providing high per pulse energy, as
well as the superconducting accelerator operating at a repetition rate of about
1 MHz providing high average intensity. Both accelerators build a soft X-ray
free electron laser with the new variable gab undulator section. With this
flexible light sources, TMO supports many experimental techniques not
previously available at LCLS and will have two X-ray beam focus spots in line.
Thereby, TMO supports Atomic, Molecular and Optical (AMO), strong-field and
nonlinear science and will host a designated new dynamic reaction microscope
with a sub-micron X-ray focus spot. The flexible instrument design is optimized
for studying ultrafast electronic and molecular phenomena and can take full
advantage of the sub-femtosecond soft X-ray pulse generation program
Experimental Demonstration of Attosecond Pump-Probe Spectroscopy with an X-ray Free-Electron Laser
Pump-probe experiments with sub-femtosecond resolution are the key to
understanding electronic dynamics in quantum systems. Here we demonstrate the
generation and control of sub-femtosecond pulse pairs from a two-colour X-ray
free-electron laser (XFEL). By measuring the delay between the two pulses with
an angular streaking diagnostic, we characterise the group velocity of the XFEL
and demonstrate control of the pulse delay down to 270 as. We demonstrate the
application of this technique to a pump-probe measurement in core-excited
para-aminophenol. These results demonstrate the ability to perform pump-probe
experiments with sub-femtosecond resolution and atomic site specificity.Comment: 55 pages, main manuscript (5 figures) + supplementary materials (25
figures), 30 figures total. Submitted to Nature Photonic
Single and Multi-photon Induced Ionization in Atoms and Molecules
The response of atomic and molecular species to photoionization is being studied for decades now. These atoms and molecules respond characteristically upon absorption of photons. The interesting question is: how is the energy deposited into the atoms and molecules by this purest form of energy ultimately dissipated? The advent and development of X-ray synchrotons, free-electron lasers and the strong field optical lasers keep ushering new dimensions into this question in terms of the ability to follow rapid sequence of events, and, otherwise, hidden relaxation mechanisms.
Through the means of resonant excitation of valence and inner shell electrons of simple atom such as neon and cluster-like complex molecular system such as fullerene and endohedral fullerene, we investigated their relaxation mechanisms by absorption of single and multiple photons. At excitation above their characteristic resonances, we observed hitherto unknown time delayed relaxation mechanisms in the structural change of fullerene, interatomic Coulombic decay and incomplete charge transfer processes in endohedral fullerene, and two photon absorption in neon through observation of fluorescence. Furthermore, we also investigated the fragmentation and hydrogen migration dynamics in hydrocarbons to explore the energy dissipation question for biologically relevant systems. The work is worthwhile in that it contributes to the understanding of the ultrafast internal dynamics of various processes and systems relevant to physics, chemistry, and biology