111 research outputs found

    Diagnosis and aetiology of congenital muscular dystrophy: we are halfway there

    Get PDF
    OBJECTIVES: To evaluate the diagnostic outcomes in a large cohort of congenital muscular dystrophy (CMD) patients using traditional and Next Generation Sequencing (NGS) technologies. METHODS: 123 CMD patients were investigated using the traditional approaches of histology, immunohistochemical analysis of muscle biopsy and candidate gene sequencing. Undiagnosed patients available for further testing were investigated using NGS. RESULTS: Muscle biopsy and immunohistochemical analysis found deficiencies of laminin α2, α-dystroglycan or collagen VI in 50% of patients. Candidate gene sequencing and chromosomal microarray established a genetic diagnosis in 32% (39/123). Of 85 patients presenting in the last 20 years, 28 of 51 who lacked a confirmed genetic diagnosis (55%) consented to NGS studies, leading to confirmed diagnoses in a further 11 patients. Using the combination of approaches, a confirmed genetic diagnosis was achieved in 51% (43/85). The diagnoses within the cohort were heterogeneous. 45/59 probands with confirmed or probable diagnoses had variants in genes known to cause CMD (76%), and 11/59 (19%) had variants in genes associated with congenital myopathies, reflecting overlapping features of these conditions. One patient had a congenital myasthenic syndrome and two had microdeletions. Within the cohort, five patients had variants in novel (PIGY and GMPPB) or recently published genes (GFPT1 and MICU1) and seven had variants in TTN or RYR1; large genes that are technically difficult to Sanger sequence. INTERPRETATION: These data support NGS as a first-line tool for genetic evaluation of patients with a clinical phenotype suggestive of CMD, with muscle biopsy reserved as a second-tier investigation. This article is protected by copyright. All rights reserved

    Analysis of the time course and prognostic factors determining toxicity due to infused fluorouracil

    Get PDF
    Analysis of the time course and prognostic factors determining toxicity due to infused fluorouracil. This study used a prospectively managed clinical database in order to identify 1470 patients with gastrointestinal cancers receiving protracted venous infusion (PVI) fluorouracil (5FU). It aimed to determine the time course of toxicity due to PVI 5FU and to analyse factors predicting toxicity. The initial development of stomatitis occurred more rapidly than diarrhoea or palmar plantar erythema (PPE). The percentage of patients with National Cancer Institute Common Toxicity Criteria ( CTC) grade 2 or worse PPE peaked at 9% between weeks 8 and 17, whereas this peak occurred earlier for stomatitis and diarrhoea. The development of CTC grade 1 toxicity in the first 28 days after commencement of chemotherapy was classified as early grade 1 toxicity. Multivariate Cox regression analysis showed that female sex, better performance status, elevated bilirubin, early grade 1 PPE and early grade 1 diarrhoea were independent prognostic factors for the development of CTC grade 2 or worse PPE ( P<0.01). Female sex, increased age, elevated alanine transaminase and urea and early grade 1 PPE were significant independent prognostic factors for the development of CTC grade 2 or worse stomatitis ( P<0.01). Early CTC grade 1 diarrhoea predicted CTC grade 2 or worse diarrhoea ( P<0.01). Older, female patients with good performance status and impaired liver and renal function who develop early grade 1 PPE alone or in combination with diarrhoea are at highest risk of subsequently developing grade 2 or worse PPE or stomatitis during treatment with PVI 5FU. Reduction of infused 5FU dose should be considered for these patients. Such an approach could both reduce severe toxicity owing to chemotherapy and minimise treatment delays, and should be evaluated prospectively

    Mathematical modeling of the dynamic storage of iron in ferritin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Iron is essential for the maintenance of basic cellular processes. In the regulation of its cellular levels, ferritin acts as the main intracellular iron storage protein. In this work we present a mathematical model for the dynamics of iron storage in ferritin during the process of intestinal iron absorption. A set of differential equations were established considering kinetic expressions for the main reactions and mass balances for ferritin, iron and a discrete population of ferritin species defined by their respective iron content.</p> <p>Results</p> <p>Simulation results showing the evolution of ferritin iron content following a pulse of iron were compared with experimental data for ferritin iron distribution obtained with purified ferritin incubated <it>in vitro </it>with different iron levels. Distinctive features observed experimentally were successfully captured by the model, namely the distribution pattern of iron into ferritin protein nanocages with different iron content and the role of ferritin as a controller of the cytosolic labile iron pool (cLIP). Ferritin stabilizes the cLIP for a wide range of total intracellular iron concentrations, but the model predicts an exponential increment of the cLIP at an iron content > 2,500 Fe/ferritin protein cage, when the storage capacity of ferritin is exceeded.</p> <p>Conclusions</p> <p>The results presented support the role of ferritin as an iron buffer in a cellular system. Moreover, the model predicts desirable characteristics for a buffer protein such as effective removal of excess iron, which keeps intracellular cLIP levels approximately constant even when large perturbations are introduced, and a freely available source of iron under iron starvation. In addition, the simulated dynamics of the iron removal process are extremely fast, with ferritin acting as a first defense against dangerous iron fluctuations and providing the time required by the cell to activate slower transcriptional regulation mechanisms and adapt to iron stress conditions. In summary, the model captures the complexity of the iron-ferritin equilibrium, and can be used for further theoretical exploration of the role of ferritin in the regulation of intracellular labile iron levels and, in particular, as a relevant regulator of transepithelial iron transport during the process of intestinal iron absorption.</p

    Swallowing, nutrition and patient-rated functional outcomes at 6 months following two non-surgical treatments for T1-T3 oropharyngeal cancer

    Get PDF
    Altered fractionation radiotherapy with concomitant boost (AFRT-CB) may be considered an alternative treatment for patients not appropriate for chemoradiation (CRT). As functional outcomes following AFRT-CB have been minimally reported, this exploratory paper describes the outcomes of patients managed with AFRT-CB or CRT at 6 months post-treatment

    Altered monocyte and fibrocyte phenotype and function in scleroderma interstitial lung disease: reversal by caveolin-1 scaffolding domain peptide

    Get PDF
    Interstitial lung disease (ILD) is a major cause of morbidity and mortality in scleroderma (systemic sclerosis, or SSc). Fibrocytes are a monocyte-derived cell population implicated in the pathogenesis of fibrosing disorders. Given the recently recognized importance of caveolin-1 in regulating function and signaling in SSc monocytes, in the present study we examined the role of caveolin-1 in the migration and/or trafficking and phenotype of monocytes and fibrocytes in fibrotic lung disease in human patients and an animal model. These studies fill a gap in our understanding of how monocytes and fibrocytes contribute to SSc-ILD pathology. We found that C-X-C chemokine receptor type 4-positive (CXCR4+)/collagen I-positive (ColI+), CD34+/ColI+ and CD45+/ColI+ cells are present in SSc-ILD lungs, but not in control lungs, with CXCR4+ cells being most prevalent. Expression of CXCR4 and its ligand, stromal cell-derived factor 1 (CXCL12), are also highly upregulated in SSc-ILD lung tissue. SSc monocytes, which lack caveolin-1 and therefore overexpress CXCR4, exhibit almost sevenfold increased migration toward CXCL12 compared to control monocytes. Restoration of caveolin-1 function by administering the caveolin scaffolding domain (CSD) peptide reverses this hypermigration. Similarly, transforming growth factor β-treated normal monocytes lose caveolin-1, overexpress CXCR4 and exhibit 15-fold increased monocyte migration that is CSD peptide-sensitive. SSc monocytes exhibit a different phenotype than normal monocytes, expressing high levels of ColI, CD14 and CD34. Because ColI+/CD14+ cells are prevalent in SSc blood, we looked for such cells in lung tissue and confirmed their presence in SSc-ILD lungs but not in normal lungs. Finally, in the bleomycin model of lung fibrosis, we show that CSD peptide diminishes fibrocyte accumulation in the lungs. Our results suggest that low caveolin-1 in SSc monocytes contributes to ILD via effects on cell migration and phenotype and that the hyperaccumulation of fibrocytes in SSc-ILD may result from the altered phenotype and migratory activity of their monocyte precursors

    One step closer to understanding the role of bacteria in diabetic foot ulcers: characterising the microbiome of ulcers

    Get PDF
    Background: The aim of this study was to characterise the microbiome of new and recurrent diabetic foot ulcers using 16S amplicon sequencing (16S AS), allowing the identification of a wider range of bacterial species that may be important in the development of chronicity in these debilitating wounds. Twenty patients not receiving antibiotics for the past three months were selected, with swabs taken from each individual for culture and 16S AS. DNA was isolated using a combination of bead beating and kit extraction. Samples were sequenced on the Illumina Hiseq 2500 platform. Results: Conventional laboratory culture showed positive growth from only 55 % of the patients, whereas 16S AS was positive for 75 % of the patients (41 unique genera, representing 82 different operational taxonomic units (OTU’s). S. aureus was isolated in 72 % of culture-positive samples, whereas the most commonly detected bacteria in all ulcers were Peptoniphilusspp., Anaerococcus spp. and Corynebacterium spp., with the addition of Staphylococcus spp. in new ulcers. The majority of OTU’s residing in both new and recurrent ulcers (over 67 %) were identified as facultative or strict anaerobic Gram-positive organisms. Principal component analysis (PCA) showed no difference in clustering between the two groups (new and recurrent ulcers). Conclusions: The abundance of anaerobic bacteria has important implications for treatment as it suggests that the microbiome of each ulcer “starts afresh” and that, although diverse, are not distinctly different from one another with respect to new or recurrent ulcers. Therefore, when considering antibiotic therapy the duration of current ulceration may be a more important consideration than a history of healed ulcer

    Emerging themes to support ambitious UK marine biodiversity conservation

    Get PDF
    Healthy marine ecosystems provide a wide range of resources and services that support life on Earth and contribute to human wellbeing. Marine Protected Areas (MPAs) are accepted as an important tool for the restoration and maintenance of marine ecosystem structure, function, health and ecosystem integrity through the conservation of significant species, habitats, or entire ecosystems. In recent years there has been a rapid expansion in the area of ocean designated as an MPA. Despite this progress in spatial protection targets and the progressive knowledge of the essential interdependence between the human and the ocean system, marine biodiversity continues to decline, placing in jeopardy the range of ecosystem services benefits humans rely on. There is a need to address this shortcoming. Ambitious marine conservation:• Requires a shift from managing individual marine features within MPAs to whole-sites to enable repair and renewal of marine systems;• Reflects an ambition for sustainable livelihoods by fully integrating fisheries management with conservation (Ecosystem Based Fisheries Management) as the two are critically interdependent;• Establishes a world class and cost effective ecological and socio-economic monitoring and evaluation framework that includes the use of controls and sentinel sites to improve sustainability in marine management; and• Challenges policy makers and practitioners to be progressive by integrating MPAs into the wider seascape as critical functional components rather than a competing interest and move beyond MPAs as the only tool to underpin the benefits derived from marine ecosystems by identifying other effective area-based conservation measures (OECMs) to establish synergies with wider governance frameworks

    Quasi-periodic X-ray eruptions years after a nearby tidal disruption event

    Get PDF
    \ua9 The Author(s) 2024.Quasi-periodic eruptions (QPEs) are luminous bursts of soft X-rays from the nuclei of galaxies, repeating on timescales of hours to weeks1–5. The mechanism behind these rare systems is uncertain, but most theories involve accretion disks around supermassive black holes (SMBHs) undergoing instabilities6–8 or interacting with a stellar object in a close orbit9–11. It has been suggested that this disk could be created when the SMBH disrupts a passing star8,11, implying that many QPEs should be preceded by observable tidal disruption events (TDEs). Two known QPE sources show long-term decays in quiescent luminosity consistent with TDEs4,12 and two observed TDEs have exhibited X-ray flares consistent with individual eruptions13,14. TDEs and QPEs also occur preferentially in similar galaxies15. However, no confirmed repeating QPEs have been associated with a spectroscopically confirmed TDE or an optical TDE observed at peak brightness. Here we report the detection of nine X-ray QPEs with a mean recurrence time of approximately 48 h from AT2019qiz, a nearby and extensively studied optically selected TDE16. We detect and model the X-ray, ultraviolet (UV) and optical emission from the accretion disk and show that an orbiting body colliding with this disk provides a plausible explanation for the QPEs

    Historical sampling reveals dramatic demographic changes in western gorilla populations

    Get PDF
    Background: Today many large mammals live in small, fragmented populations, but it is often unclear whether this subdivision is the result of long-term or recent events. Demographic modeling using genetic data can estimate changes in long-term population sizes while temporal sampling provides a way to compare genetic variation present today with that sampled in the past. In order to better understand the dynamics associated with the divergences of great ape populations, these analytical approaches were applied to western gorillas (Gorilla gorilla) and in particular to the isolated and Critically Endangered Cross River gorilla subspecies (G. g. diehli).Results: We used microsatellite genotypes from museum specimens and contemporary samples of Cross River gorillas to infer both the long-term and recent population history. We find that Cross River gorillas diverged from the ancestral western gorilla population ~17,800 years ago (95% HDI: 760, 63,245 years). However, gene flow ceased only ~420 years ago (95% HDI: 200, 16,256 years), followed by a bottleneck beginning ~320 years ago (95% HDI: 200, 2,825 years) that caused a 60-fold decrease in the effective population size of Cross River gorillas. Direct comparison of heterozygosity estimates from museum and contemporary samples suggests a loss of genetic variation over the last 100 years.Conclusions: The composite history of western gorillas could plausibly be explained by climatic oscillations inducing environmental changes in western equatorial Africa that would have allowed gorilla populations to expand over time but ultimately isolate the Cross River gorillas, which thereafter exhibited a dramatic population size reduction. The recent decrease in the Cross River population is accordingly most likely attributable to increasing anthropogenic pressure over the last several hundred years. Isolation of diverging populations with prolonged concomitant gene flow, but not secondary admixture, appears to be a typical characteristic of the population histories of African great apes, including gorillas, chimpanzees and bonobos

    Digenic inheritance involving a muscle-specific protein kinase and the giant titin protein causes a skeletal muscle myopathy.

    Get PDF
    In digenic inheritance, pathogenic variants in two genes must be inherited together to cause disease. Only very few examples of digenic inheritance have been described in the neuromuscular disease field. Here we show that predicted deleterious variants in SRPK3, encoding the X-linked serine/argenine protein kinase 3, lead to a progressive early onset skeletal muscle myopathy only when in combination with heterozygous variants in the TTN gene. The co-occurrence of predicted deleterious SRPK3/TTN variants was not seen among 76,702 healthy male individuals, and statistical modeling strongly supported digenic inheritance as the best-fitting model. Furthermore, double-mutant zebrafish (srpk3-/-; ttn.1+/-) replicated the myopathic phenotype and showed myofibrillar disorganization. Transcriptome data suggest that the interaction of srpk3 and ttn.1 in zebrafish occurs at a post-transcriptional level. We propose that digenic inheritance of deleterious changes impacting both the protein kinase SRPK3 and the giant muscle protein titin causes a skeletal myopathy and might serve as a model for other genetic diseases
    corecore