20 research outputs found

    Astroglial prospects in neuronal activities

    No full text
    National audienc

    Implication du canal glial Kir4.1 dans la régulation du potassium extracellulaire : étude in vivo chez la souris knock-out Kir4.1 sous anesthésie

    Get PDF
    Les cellules gliales, notamment les astrocytes, interviennent dans l'homéostasie potassique en limitant entre autres les excès de potassium dans le milieu extracellulaire. C'est le tamponnage potassique glial. Les canaux gliaux Kir4.1, principaux responsables de la haute conductance potassique de ces cellules au potentiel de repos, semblent être les candidats idéaux pour assurer un rôle important dans le tamponnage potassique. Cependant, leur contribution effective et l'importance de cette participation dans la recapture de potassium sont encore peu claires. Notre étude s'est appuyée sur le modèle de la souris transgénique knock-out pour le gène Kir4.1 dans les cellules gliales GFAP+ (cKG: knock-out conditionnel). Le but principal était d'étudier l'impact de cette déplétion génétique sur la recapture du potassium extracellulaire. Les expériences ont été faites in vivo dans l'hippocampe de souris juvéniles, maintenues sous anesthésie (kétamine-xylasine). Nous avons utilisé des pipettes sensibles au potassium pour enregistrer les variations de concentration de potassium extracellulaire ([K+]extra), simultanément avec des enregistrements de potentiels de champ DC. Nous avons évalué les différences de dynamisme du [K+]extra suite à des stimulations (chapitre 1) ou lors de l'activité spontanée hippocampique, caractérisée par de lents épisodes périodiques d'activité, occasionnant de conséquentes augmentations de [K+]extra (~ 0.5 mM) (chapitre 2). En parallèle, nous avons aussi effectué des enregistrements intracellulaires gliaux (chapitre 1) pour évaluer l'effet de la déplétion sur leurs propriétés membranaires. Nous avons mis en évidence que les souris cKG Kir4.1: 1) présentaient des glies dépolarisées de près de 20 m V, avec une perméabilité potassique altérée; 2) présentaient un retour plus lent du [K+]extra suite des stimulations induisant un excès modéré de [K+]extra <2mM), ou suite à l'activité spontanée lente hippocampique ; 3) présentait une activité spontanée moins intense, associée à un dynamisme de [K+]extra plus lent. Nous montrons donc dans cette étude que les canaux Kir4.1 gliaux confèrent une importante conductance potassique aux cellules gliales, et par conséquent ont un rôle essentiel dans le maintien du potentiel de membrane des cellules gliales proche du potentiel d'équilibre du potassium. De plus, nous apportons des évidences en faveur de l'implication de ces canaux dans une recapture efficace du potassium extracellulaire

    Astroglial prospects in neuronal activities

    No full text
    National audienc

    Oxygen and Glucose Deprivation Induces Bergmann Glia Membrane Depolarization and Ca2+ Rises Mainly Mediated by K+ and ATP Increases in the Extracellular Space

    No full text
    During brain ischemia, intense energy deficiency induces a complex succession of events including pump failure, acidosis and exacerbated glutamate release. In the cerebellum, glutamate is the principal mediator of Purkinje neuron anoxic depolarization during episodes of oxygen and glucose deprivation (OGD). Here, the impact of OGD is studied in Bergmann glia, specialized astrocytes closely associated to Purkinje neurons. Patch clamp experiments reveal that during OGD Bergmann glial cells develop a large depolarizing current that is not mediated by glutamate and purinergic receptors but is mainly due to the accumulation of K+ in the extracellular space. Furthermore, we also found that increases in the intracellular Ca2+ concentration appear in Bergmann glia processes several minutes following OGD. These elevations require, in an early phase, Ca2+ mobilization from internal stores via P2Y receptor activation, and, over longer periods, Ca2+ entry through store-operated calcium channels. Our results suggest that increases of K+ and ATP concentrations in the extracellular space are primordial mediators of the OGD effects on Bergmann glia. In the cerebellum, glial responses to energy deprivation-triggering events are therefore highly likely to follow largely distinct rules from those of their neuronal counterparts

    Astroglial networks promote neuronal coordination

    No full text
    International audienc
    corecore