12 research outputs found

    Synthesis of ZnO/Au Nanocomposite for Antibacterial Applications

    No full text
    Annually, antimicrobial-resistant infections-related mortality worldwide accelerates due to the increased use of antibiotics during the coronavirus pandemic and the antimicrobial resistance, which grows exponentially, and disproportionately to the current rate of development of new antibiotics. Nanoparticles can be an alternative to the current therapeutic approach against multi-drug resistance microorganisms caused infections. The motivation behind this work was to find a superior antibacterial nanomaterial, which can be efficient, biocompatible, and stable in time. This study evaluated the antibacterial activity of ZnO-based nanomaterials with different morphologies, synthesized through the solvothermal method and further modified with Au nanoparticles through wet chemical reduction. The structure, crystallinity, and morphology of ZnO and ZnO/Au nanomaterials have been investigated with XRD, SEM, TEM, DLS, and FTIR spectroscopy. The antibacterial effect of unmodified ZnO and ZnO/Au nanomaterials against Escherichia coli and Staphylococcus aureus was investigated through disc diffusion and tetrazolium/formazan (TTC) assays. The results showed that the proposed nanomaterials exhibited significant antibacterial effects on the Gram-positive and Gram-negative bacteria. Furthermore, ZnO nanorods with diameters smaller than 50 nm showed better antibacterial activity than ZnO nanorods with larger dimensions. The antibacterial efficiency against Escherichia coli and Staphylococcus aureus improved considerably by adding 0.2% (w/w) Au to ZnO nanorods. The results indicated the new materials’ potential for antibacterial applications

    On the Development of a New Flexible Pressure Sensor

    No full text
    The rapid advancement of the Internet of Things (IoT) serves as a significant driving force behind the development of innovative sensors and actuators. This technological progression has created a substantial demand for new flexible pressure sensors, essential for a variety of applications ranging from wearable devices to smart home systems. In response to this growing need, our laboratory has developed a novel flexible pressure sensor, designed to offer an improved performance and adaptability. This study aims to present our newly developed sensor, detailing the comprehensive investigations we conducted to understand how different parameters affect its behaviour. Specifically, we examined the influence of the resistive layer thickness and the elastomeric substrate on the sensor’s performance. The resistive layer, a critical component of the sensor, directly impacts its sensitivity and accuracy. By experimenting with varying thicknesses, we aimed to identify the optimal configuration that maximizes sensor efficiency. Similarly, the elastomeric substrate, which provides the sensor’s flexibility, was scrutinized to determine how its properties affect the sensor’s overall functionality. Our findings highlight the delicate balance required between the resistive layer and the elastomeric substrate to achieve a sensor that is both highly sensitive and durable. This research contributes valuable insights into the design and optimization of flexible pressure sensors, paving the way for more advanced IoT applications

    Integrated nanozyme electrochemical sensor for the detection of tannic acid: An advanced approach to rapid and efficient environmental monitoring

    No full text
    This study presents a novel methodology for the rapid on-site detection of tannic acid (TA), a prevalent organic contaminant in various natural environments, notably in plant-derived sources. The proposed approach involves the development of a compact integrated electrochemical sensor incorporating a nanozyme system. Specifically, this system comprises Fe2O3 nanoparticles (NPs) embedded within a chitosan (CS) matrix, immobilized onto a sulfur-doped graphene (S-Gr) substrate deposited on a gold electrode (AuE). The Fe2O3NPs exhibit peroxidase-like artificial enzyme activity, contributing to exceptional stability and catalytic efficiency in TA oxidation processes. Additionally, the CS matrix acts as a stabilizing agent, enhancing the performance and recyclability of the nanozyme. Furthermore, the S-Gr nanomaterial facilitates rapid electron transfer, leading to heightened sensitivity and prompt response times. The integration of these advanced nanomaterials with a microfabricated electrode presents an economically feasible, reliable, and effective solution for TA detection, with promising prospects for large-scale deployment and environmental monitoring. The Fe2O3CS-S-Gr/AuE sensing system demonstrates a calculated limit of detection (LOD) of 3.6 × 10−3 µM and an increased sensitivity of 0.2 µA×µM−1, with a wide linear concentration range spanning from 0.01 to 1000 µM for TA detection. Notably, the recovery values obtained for surface water samples fall within the range of 97.7 % to 99.5 %, indicating strong agreement with results derived from the standard method, UHPLC-MS/MS

    Dual-Responsive Hydrogels for Mercury Ion Detection and Removal from Wastewater

    No full text
    This study describes the development of a fast and cost-effective method for the detection and removal of Hg2+ ions from aqueous media, consisting of hydrogels incorporating chelating agents and a rhodamine derivative (to afford a qualitative evaluation of the heavy metal entrapment inside the 3D polymeric matrix). These hydrogels, designed for the simultaneous detection and entrapment of mercury, were obtained through the photopolymerization of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) and N-vinyl-2-pyrrolidone (NVP), utilizing N,N′-methylenebisacrylamide (MBA) as crosslinker, in the presence of polyvinyl alcohol (PVA), a rhodamine B derivative, and one of the following chelating agents: phytic acid, 1,3-diamino-2-hydroxypropane-tetraacetic acid, triethylenetetramine-hexaacetic acid, or ethylenediaminetetraacetic acid disodium salt. The rhodamine derivative had a dual purpose in this study: firstly, it was incorporated into the hydrogel to allow the qualitative evaluation of mercury entrapment through its fluorogenic switch-off abilities when sensing Hg2+ ions; secondly, it was used to quantitatively evaluate the level of residual mercury from the decontaminated aqueous solutions, via the UV-Vis technique. The ICP-MS analysis of the hydrogels also confirmed the successful entrapment of mercury inside the hydrogels and a good correlation with the UV-Vis method

    Comparative Study of Graphene Nanoplatelets and Multiwall Carbon Nanotubes-Polypropylene Composite Materials for Electromagnetic Shielding

    No full text
    Graphene nanoplatelets (GNPs) and multiwall carbon nanotubes (CNTs)-polypropylene (PP) composite materials for electromagnetic interference (EMI) shielding applications were fabricated as 1 mm thick panels and their properties were studied. Structural and morphologic characterization indicated that the obtained composite materials are not simple physical mixtures of these components but new materials with particular properties, the filler concentration and nature affecting the nanomaterials’ structure and their conductivity. In the case of GNPs, their characteristics have a dramatic effect of their functionality, since they can lead to composites with lower conductivity and less effective EMI shielding. Regarding CNTs-PP composite panels, these were found to exhibit excellent EMI attenuation of more than 40 dB, for 10% CNTs concentration. The development of PP-based composite materials with added value and particular functionality (i.e., electrical conductivity and EMI shielding) is highly significant since PP is one of the most used polymers, the best for injection molding, and virtually infinitely recyclable

    Synthesis and characterization of polyurethane flexible foams provided from PET derivatives, fly ash, and glass wastes

    No full text
    The aim of this study involved the synthesis and characterization of polyurethane (PUR) foams obtained from poly(ethylene terephthalate) (PET) depolymerization products and two types of filling agents, namely fly ash and glass waste. The depolymerized PET-based products were obtained by zinc acetate-catalyzed glycolysis process in diethylene glycol (DEG) as a co-reactant. The resulting glycolysis products were contacted with methylene diphenyl diisocyanate, castor oil, and reinforcing agents. The resulting PUR specimens were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), EDX mapping, mechanical tests, and thermal analysis. The analysis confirmed that the best mechanical performances were registered by the specimens with the lowest concentration of filling agent, while the highest thermal resistance was achieved by the PUR foams with the highest concentration of reinforcing agent

    Self-Sustained Three-Dimensional Macroporous TiO2-Graphene Photocatalyst for Sunlight Decolorization of Methyl Orange

    No full text
    The development of highly efficient sunlight-driven photocatalysts has triggered increased attention due to their merit in effluent treatment through a chemically green approach. To this end, we present herein the synthesis and characterization of the TiO2/3D-GF/Ni hybrid emphasizing the main structural and morphological properties and the photodegradation process of a highly resistant aromatic azo dye, methyl orange, under both UV light and simulated sunlight. Three-dimensional (3D) graphene was grown by the thermal CVD method on the nickel foam and subsequently coated with thin films of anatase employing the sol–gel method. Thereafter, it was gratifyingly demonstrated that the hybrid nanomaterial, TiO2/3D-GF-Ni, was able to bring about more than 90% decolorization of methyl orange dye after 30 min under simulated sunlight irradiance. Moreover, the efficiency of the methyl orange decolorization was 99.5% after three successive cycles. This high-performance photocatalyst which can effectively decolorize methyl orange will most likely make a great contribution to reducing environmental pollution by employing renewable solar energy

    Assessing Polysaccharides/Aloe Vera–Based Hydrogels for Tumor Spheroid Formation

    No full text
    In vitro tumor spheroids have proven to be useful 3D tumor culture models for drug testing, and determining the molecular mechanism of tumor progression and cellular interactions. Therefore, there is a continuous search for their industrial scalability and routine preparation. Considering that hydrogels are promising systems that can favor the formation of tumor spheroids, our study aimed to investigate and develop less expensive and easy-to-use amorphous and crosslinked hydrogels, based on natural compounds such as sodium alginate (NaAlg), aloe vera (AV) gel powder, and chitosan (CS) for tumor spheroid formation. The ability of the developed hydrogels to be a potential spheroid-forming system was evaluated using MDA-MB-231 and U87MG cancer cells. Spheroid abilities were influenced by pH, viscosity, and crosslinking of the hydrogel. Addition of either AV or chitosan to sodium alginate increased the viscosity at pH 5, resulting in amorphous hydrogels with a strong gel texture, as shown by rheologic analysis. Only the chitosan-based gel allowed formation of spheroids at pH 5. Among the variants of AV-based amorphous hydrogels tested, only hydrogels at pH 12 and with low viscosity promoted the formation of spheroids. The crosslinked NaAlg/AV, NaAlg/AV/glucose, and NaAlg/CS hydrogel variants favored more efficient spheroid formation. Additional studies would be needed to use AV in other physical forms and other formulations of hydrogels, as the current study is an initiation, in evaluating the potential use of AV gel in tumor spheroid formation systems

    Exploring the Impact of Alginate—PVA Ratio and the Addition of Bioactive Substances on the Performance of Hybrid Hydrogel Membranes as Potential Wound Dressings

    No full text
    Healthcare professionals face an ongoing challenge in managing both acute and chronic wounds, given the potential impact on patients’ quality of life and the limited availability of expensive treatment options. Hydrogel wound dressings offer a promising solution for effective wound care due to their affordability, ease of use, and ability to incorporate bioactive substances that enhance the wound healing process. Our study aimed to develop and evaluate hybrid hydrogel membranes enriched with bioactive components such as collagen and hyaluronic acid. We utilized both natural and synthetic polymers and employed a scalable, non-toxic, and environmentally friendly production process. We conducted extensive testing, including an in vitro assessment of moisture content, moisture uptake, swelling rate, gel fraction, biodegradation, water vapor transmission rate, protein denaturation, and protein adsorption. We evaluated the biocompatibility of the hydrogel membranes through cellular assays and performed instrumental tests using scanning electron microscopy and rheological analysis. Our findings demonstrate that the biohybrid hydrogel membranes exhibit cumulative properties with a favorable swelling ratio, optimal permeation properties, and good biocompatibility, all achieved with minimal concentrations of bioactive agents

    Facile Electrodeposition-Based Chemosensors Using PANI and C-Hybrid Nanomaterials for the Selective Detection of Ammonia and Nitrogen Dioxide at Room Temperature

    No full text
    Sensor systems for monitoring indoor air quality are vital for the precise quantification of the mechanisms which lead to the deterioration of human health, with a typical person spending an average of 20 h a day in an enclosed space. Thus, a series of layered chemoresistive sensors, obtained by the facile electrodeposition of carbon nanomaterial-enhanced PANI composites, have been tested for the selective detection of two core indoor pollutants: ammonia and nitrogen dioxide. The sensors were tested with respect to sensitivity and selectivity to the target gasses, with performance being assessed based on response linearity and repeatability at room temperature. Of the tested sensors, two have been identified as having an adequate performance on ammonia, with sensitivities of up to 96.99% and resolutions of up to 0.85 ppm being observed, while on nitrogen dioxide, despite the successful sensor having a lower sensitivity, 10.71%, it has shown high resolution, 1.25 ppm, and linearity over a large concentration domain. These high performances highlight the viability of multi-layers chemosensors based on the electrodeposition of nanomaterial-enhanced conductive polymers for the detection of pollutant gasses, with finetuning of the detection layer allowing the accurate monitoring of a wide range of gasses
    corecore