7 research outputs found

    Drosophila p53 isoforms differentially regulate apoptosis and apoptosis-induced proliferation

    No full text
    Irradiated or injured cells enter apoptosis, and in turn, promote proliferation of surrounding unaffected cells. In Drosophila, apoptotic cells have an active role in proliferation, where the caspase Dronc and p53 induce mitogen expression and growth in the surrounding tissues. The Drosophila p53 gene structure is conserved and encodes at least two protein isoforms: a full-length isoform (Dp53) and an N-terminally truncated isoform (DΔNp53). Historically, DΔNp53 was the first p53 isoform identified and was thought to be responsible for all p53 biological activities. It was shown that DΔNp53 induces apoptosis by inducing the expression of IAP antagonists, such as Reaper. Here we investigated the roles of Dp53 and DΔNp53 in apoptosis and apoptosis-induced proliferation. We found that both isoforms were capable of activating apoptosis, but that they each induced distinct IAP antagonists. Expression of DΔNp53 induced Wingless (Wg) expression and enhanced proliferation in both 'undead cells' and in 'genuine' apoptotic cells. In contrast to DΔNp53, Dp53 did not induce Wg expression in the absence of the endogenous p53 gene. Thus, we propose that DΔNp53 is the main isoform that regulates apoptosis-induced proliferation. Understanding the roles of Drosophila p53 isoforms in apoptosis and in apoptosis-induced proliferation may shed new light on the roles of p53 isoforms in humans, with important implications in cancer biology

    Foxo and Fos regulate the decision between cell death and survival in response to UV irradiation

    No full text
    Cells damaged by environmental insults have to be repaired or eliminated to ensure tissue homeostasis in metazoans. Recent studies suggest that the balance between cell survival signals and pro-apoptotic stimuli controls the decision between cell repair and death. How these competing signals are integrated and interpreted to achieve accurate control over cell fate in vivo is incompletely understood. Here, we show that the Forkhead Box O transcription factor Foxo and the AP-1 transcription factor DFos are required downstream of Jun-N-terminal kinase signaling for the apoptotic response to UV-induced DNA damage in the developing Drosophila retina. Both transcription factors regulate the pro-apoptotic gene hid. Our results indicate that UV-induced apoptosis is repressed by receptor tyrosine kinase-mediated inactivation of Foxo. These data suggest that integrating stress and survival signals through Foxo drives the decision between cell death and repair of damaged cells in vivo

    Molecular biology of bacterial bioluminescence

    No full text
    corecore