21 research outputs found

    Selection of microsatellite markers for bladder cancer diagnosis without the need for corresponding blood

    Get PDF
    Microsatellite markers are used for loss-of-heterozygosity, allelic imbalance and clonality analyses in cancers. Usually, tumor DNA is compared to corresponding normal DNA. However, normal DNA is not always available and can display aberrant allele ratios due to copy number variations in the genome. Moreover, stutter peaks may complicate the analysis. To use microsatellite markers for diagnosis of recurrent bladder cancer, we aimed to select markers without stutter peaks and a constant ratio between alleles, thereby avoiding the need for a control DNA sample. We investigated 49 microsatellite markers with tri- and tetranucleotide repeats in regions commonly lost in bladder cancer. Based on analysis of 50 blood DNAs the 12 best performing markers were selected with few stutter peaks and a constant ratio between peaks heights. Per marker upper and lower cut off values for allele ratios were determined. LOH of the markers was observed in 59/104 tumor DNAs. We then determined the sensitivity of the marker panel for detection of recurrent bladder cancer by assaying 102 urine samples of these patients. Sensitivity was 63% when patients were stratified for LOH in their primary tumors. We demonstrate that up-front selection of microsatellite markers obliterates the need for a corresponding blood sample. For diagnosis of bladder cancer recurrences in urine this significantly reduces costs. Moreover, this approach facilitates retrospective analysis of archival tumor samples for allelic imbalance

    Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci

    Get PDF
    Genetic and environmental components as well as their interaction contribute to the risk of schizophrenia, making it highly relevant to include environmental factors in genetic studies of schizophrenia. This study comprises genome-wide association (GWA) and follow-up analyses of all individuals born in Denmark since 1981 and diagnosed with schizophrenia as well as controls from the same birth cohort. Furthermore, we present the first genome-wide interaction survey of single nucleotide polymorphisms (SNPs) and maternal cytomegalovirus (CMV) infection. The GWA analysis included 888 cases and 882 controls, and the follow-up investigation of the top GWA results was performed in independent Danish (1396 cases and 1803 controls) and German-Dutch (1169 cases, 3714 controls) samples. The SNPs most strongly associated in the single-marker analysis of the combined Danish samples were rs4757144 in ARNTL (P=3.78 Ă— 10 -6) and rs8057927 in CDH13 (P=1.39 Ă— 10 -5). Both genes have previously been linked to schizophrenia or other psychiatric disorders. The strongest associated SNP in the combined analysis, including Danish and German-Dutch samples, was rs12922317 in RUNDC2A (P=9.04 Ă— 10 -7). A region-based analysis summarizing independent signals in segments of 100 kb identified a new region-based genome-wide significant locus overlapping the gene ZEB1 (P=7.0 Ă— 10 -7). This signal was replicated in the follow-up analysis (P=2.3 Ă— 10 -2). Significant interaction with maternal CMV infection was found for rs7902091 (P SNP Ă— CMV =7.

    Intratumour heterogeneity in urologic cancers: From molecular evidence to clinical implications

    No full text
    Context Intratumour heterogeneity (ITH) can impair the precise molecular analysis of tumours and may contribute to difficulties encountered in cancer biomarker qualification and treatment personalisation. Objective This review summarises the evidence for genetic ITH in renal, bladder, and prostate carcinomas and potential strategies to address the clinical and translational research challenges arising from ITH. Evidence acquisition Publications that assessed ITH in the relevant urologic cancers were identified in a literature review. Evidence synthesis ITH with functionally distinct tumour subclones has been identified in all three tumour types. Heterogeneity of actionable genetic changes and of prognostic biomarkers between different tumour regions in the same patient suggests limitations of single biopsy-based molecular analyses for precision medicine approaches. Evolutionary constraints may differ between patients and may allow the prediction of specific evolutionary trajectories. Conclusions Assessment of multiple tumour regions for precision medicine purposes, monitoring of subclonal dynamics over time, and the preferential targeting of genetic alterations located on the trunk of the phylogenetic tree of individual cancers may accelerate the development of personalised medicine strategies and improve our understanding of treatment failure. Patient summary Genetic alterations can be heterogeneous within urologic tumours, complicating their use as biomarkers for treatment personalisation. We present novel strategies to address these challenges

    SMARCC1 expression is upregulated in prostate cancer and positively correlated with tumour recurrence and dedifferentiation

    No full text
    Background. The identification of new prognostic markers in prostate cancer (PC) is essential to improve patient treatment and management. Data suggest that SMARCC1 protein, a part of the intranuclear SWI/SNF complex which enhances the transactivation of the androgen receptor, is upregulated in PC and therefore a possible candidate marker for PC progression. Materials. Expression of SMARCC1 immunostaining was analysed on a tissue microarray containing specimens from 327 patients with prostate cancer and clinical follow-up information. Furthermore, 30 specimens from patients with benign prostate hyperplasia were included as controls as well as 30 specimens of benign prostate tissue from PC patients. Also, 18 specimens from lymph node metastases were analysed. Results. All benign specimens showed no or minimal staining for SMARCC1. In contrast, 20% of the specimens from patients with non-metastatic and nonrecurrent disease showed moderate to marked staining. In 31% of the patients with recurrent disease and in 31% of the patients with metastatic disease we found moderate to strong SMARCC1 immunostaining. In total, 23% of lymph node metastases expressed SMARCC1. SMARCC1 expression was also positively correlated to Gleason score (p<0.05), clinical T stage (p<0.01) and time to recurrence (p<0.001). In a logistic regression analysis, patients with a marked SMARCC1 immunostaining had a significantly elevated odds ratio (OR) of 16 for recurrent cancer and an OR of 4.5 for metastatic disease. Conclusions. Our present results demonstrate an increased expression of SMARCC1 protein in prostate cancer and reveal a positive correlation with tumour dedifferentiation, progression, metastasis and time to recurrence

    Expression profiling confirms the role of endocytic receptor megalin in renal vitamin D-3 metabolism

    Get PDF
    Background. The endocytic receptor megalin constitutes the major pathway for clearance of low-molecular weight plasma proteins from the glomerular filtrate into the renal proximal tubules. Furthermore, the receptor has been implicated in a number of other functions in the kidney including uptake and activation of 25-(OH) vitamin D3, calcium and sodium reabsorption as well as signal transduction. Methods. We used genome-wide expression profiling by microarray technology to detect changes in the gene expression pattern in megalin knockout mouse kidneys and to uncover some of the renal pathways affected by megalin deficiency. Results. Alterations were identified in several (patho)physiologic processes in megalin-deficient kidneys including the renal vitamin D metabolism, transforming growth factor (TGF)-{beta}1 signal transduction, lipid transport and heavy metal detoxification. Most importantly, changes were detected in the mRNA levels of 25-(OH) vitamin D-24-hydroxylase and 25-(OH) vitamin D-1{alpha}-hydroxylase as well as strong up-regulation of TGF-{beta}1 target genes. Both findings indicate plasma vitamin D deficiency and lack of vitamin D signaling in renal tissues. Conclusions. Expression profiling confirms a crucial role for megalin in renal vitamin D metabolism

    TRANSCRIPTIONAL PROFILE OF KI-RAS-INDUCED TRANSFORMATION OF THYROID CELLS.

    No full text
    In the last years, an increasing number of experiments has provided compelling evidence for a casual role of Ras protein mutations, resulting in their constitutive activation, in thyroid carcinogenesis. However, despite the clear involvement of Ras proteins in thyroid carcinogenesis, the nature of most of the target genes, whose expression is modulated by the Ras-induced signaling pathways and that are ultimately responsible for Ras-induced cellular transformation, remains largely unknown. To analyze Ras-dependent modulation of gene expression in thyroid cells we took advantage of a differentiated rat thyroid cell line, FRTL-5. As a model for Ras-dependent thyroid transformation, we used FRTL-5 cells infected with the Kirsten murine sarcoma virus, carrying the v-Ki-Ras oncogene. The infected cells (FRTL-5 v-Ki-Ras) have lost expression of the thyroid differentiation markers and also are completely transformed. We hybridized two different Affimetrix chips containing probe sets interrogating both known rat genes and ESTs for a total of more than 17,000 sequences using mRNA extracted from FRTL-5 and FRTL-5 v-Ki-Ras cell lines. We identified about 50 genes whose expression was induced and about 40 genes whose expression was downregulated more than 10-fold by Ras. We confirmed the differential expression of many of these genes in FRTL-5 v-Ki-Ras as compared to parental cells by using alternative techniques. Remarkably, we investigated the expression of some of the Ras-regulated genes in human thyroid carcinoma cell lines and tumor samples, our results, therefore, providing a new molecular profile of the genes involved in thyroid neoplastic transformation
    corecore