639 research outputs found
Impact of Space Weather on Climate and Habitability of Terrestrial Type Exoplanets
The current progress in the detection of terrestrial type exoplanets has
opened a new avenue in the characterization of exoplanetary atmospheres and in
the search for biosignatures of life with the upcoming ground-based and space
missions. To specify the conditions favorable for the origin, development and
sustainment of life as we know it in other worlds, we need to understand the
nature of astrospheric, atmospheric and surface environments of exoplanets in
habitable zones around G-K-M dwarfs including our young Sun. Global environment
is formed by propagated disturbances from the planet-hosting stars in the form
of stellar flares, coronal mass ejections, energetic particles, and winds
collectively known as astrospheric space weather. Its characterization will
help in understanding how an exoplanetary ecosystem interacts with its host
star, as well as in the specification of the physical, chemical and biochemical
conditions that can create favorable and/or detrimental conditions for
planetary climate and habitability along with evolution of planetary internal
dynamics over geological timescales. A key linkage of (astro) physical,
chemical, and geological processes can only be understood in the framework of
interdisciplinary studies with the incorporation of progress in heliophysics,
astrophysics, planetary and Earth sciences. The assessment of the impacts of
host stars on the climate and habitability of terrestrial (exo)planets will
significantly expand the current definition of the habitable zone to the
biogenic zone and provide new observational strategies for searching for
signatures of life. The major goal of this paper is to describe and discuss the
current status and recent progress in this interdisciplinary field and to
provide a new roadmap for the future development of the emerging field of
exoplanetary science and astrobiology.Comment: 206 pages, 24 figures, 1 table; Review paper. International Journal
of Astrobiology (2019
Hepatitis B Virus Lacks Immune Activating Capacity, but Actively Inhibits Plasmacytoid Dendritic Cell Function
Chronic hepatitis B virus (HBV) infection is caused by inadequate anti-viral immunity. Activation of plasmacytoid dendritic cells (pDC) leading to IFNα production is important for effective anti-viral immunity. Hepatitis B virus (HBV) infection lacks IFNα induction in animal models and patients and chronic HBV patients display impaired IFNα production by pDC. Therefore, HBV and HBV-derived proteins were examined for their effect on human pDC in vitro. In addition, the in vitro findings were compared to the function of pDC derived from chronic HBV patients ex vivo. In contrast to other viruses, HBV did not activate pDC. Moreover, HBV and HBsAg abrogated CpG-A/TLR9-induced, but not Loxoribine/TLR7-induced, mTOR-mediated S6 phosphorylation, subsequent IRF7 phosphorylation and IFNα gene transcription. HBV/HBsAg also diminished upregulation of co-stimulatory molecules, production of TNFα, IP-10 and IL-6 and pDC-induced NK cell function, whereas TLR7-induced pDC function was hardly affected. In line, HBsAg preferentially bound to TLR9-triggered pDC demonstrating that once pDC are able to bind HBV/HBsAg, the virus exerts its immune regulatory effect. HBV not only directly interfered with pDC function, but also indirectly by interfering with monocyte-pDC interaction. Also HBeAg diminished pDC function to a certain extent, but via another unknown mechanism. Interestingly, patients with HBeAg-positive chronic hepatitis B displayed impaired CpG-induced IFNα production by pDC without significant alterations in Loxoribine-induced pDC function compared to HBeAg-negative patients and healthy controls. The lack of activation and the active inhibition of pDC by HBV may both contribute to HBV persistence. The finding that the interaction between pDC and HBV may change upon activation may aid in the identification of a scavenging receptor supporting immunosuppressive effects of HBV and also in the design of novel treatment strategies for chronic HBV
Distinct regulation of c-myb gene expression by HoxA9, Meis1 and Pbx proteins in normal hematopoietic progenitors and transformed myeloid cells
The proto-oncogenic protein c-Myb is an essential regulator of hematopoiesis and is frequently deregulated in hematological diseases such as lymphoma and leukemia. To gain insight into the mechanisms underlying the aberrant expression of c-Myb in myeloid leukemia, we analyzed and compared c-myb gene transcriptional regulation using two cell lines modeling normal hematopoietic progenitor cells (HPCs) and transformed myelomonocytic blasts. We report that the transcription factors HoxA9, Meis1, Pbx1 and Pbx2 bind in vivo to the c-myb locus and maintain its expression through different mechanisms in HPCs and leukemic cells. Our analysis also points to a critical role for Pbx2 in deregulating c-myb expression in murine myeloid cells cotransformed by the cooperative activity of HoxA9 and Meis1. This effect is associated with an intronic positioning of epigenetic marks and RNA polymerase II binding in the orthologous region of a previously described alternative promoter for c-myb. Taken together, our results could provide a first hint to explain the abnormal expression of c-myb in leukemic cells
From DNA sequence to application: possibilities and complications
The development of sophisticated genetic tools during the past 15 years have facilitated a tremendous increase of fundamental and application-oriented knowledge of lactic acid bacteria (LAB) and their bacteriophages. This knowledge relates both to the assignments of open reading frames (ORF’s) and the function of non-coding DNA sequences. Comparison of the complete nucleotide sequences of several LAB bacteriophages has revealed that their chromosomes have a fixed, modular structure, each module having a set of genes involved in a specific phase of the bacteriophage life cycle. LAB bacteriophage genes and DNA sequences have been used for the construction of temperature-inducible gene expression systems, gene-integration systems, and bacteriophage defence systems.
The function of several LAB open reading frames and transcriptional units have been identified and characterized in detail. Many of these could find practical applications, such as induced lysis of LAB to enhance cheese ripening and re-routing of carbon fluxes for the production of a specific amino acid enantiomer. More knowledge has also become available concerning the function and structure of non-coding DNA positioned at or in the vicinity of promoters. In several cases the mRNA produced from this DNA contains a transcriptional terminator-antiterminator pair, in which the antiterminator can be stabilized either by uncharged tRNA or by interaction with a regulatory protein, thus preventing formation of the terminator so that mRNA elongation can proceed. Evidence has accumulated showing that also in LAB carbon catabolite repression in LAB is mediated by specific DNA elements in the vicinity of promoters governing the transcription of catabolic operons.
Although some biological barriers have yet to be solved, the vast body of scientific information presently available allows the construction of tailor-made genetically modified LAB. Today, it appears that societal constraints rather than biological hurdles impede the use of genetically modified LAB.
Know Yourself:An Adaptive Causal Network Model for Therapeutic Intervention for Regaining Cognitive Control
Part 6: Medical-Health SystemsInternational audienceLong term stress often causes depression and neuronal atrophies that in turn can lead to a variety of health problems. As a result of these cellular changes, also molecular changes occur. These changes, that include increase of glucocorticoids and decrease of the brain-derived neurotrophic factor, have the unfortunate effect that they decrease the cognitive abilities needed for the individual to solve the stressful situation. Such cognitive abilities like reappraisal and their adaptation mechanisms turn out to be substantially impaired while they are needed for regulation of the negative emotions. However, antidepressant treatments and some other therapies have proved to be quite effective for the strengthening of such cognitive abilities. This study introduces an adaptive causal network model for this phenomenon where a subject loses his or her cognitive abilities (negative metaplasticity) due to long-term stress and re-improve these cognitive abilities (positive metaplasticity) through mindfulness-based cognitive therapy (MBCT). Simulation results have been reported for demonstration of the phenomenon
Broad targeting of resistance to apoptosis in cancer
Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer
The effect of gold kiwifruit consumed with an iron fortified breakfast cereal meal on iron status in women with low iron stores: A 16 week randomised controlled intervention study
<p>Abstract</p> <p>Background</p> <p>Dietary treatment is often recommended as the first line of treatment for women with mild iron deficiency. Although it is well established that ascorbic acid enhances iron absorption, it is less clear whether the consumption of ascorbic acid rich foods (such as kiwifruit) with meals fortified with iron improves iron status. The aim of this study is to investigate whether the consumption of ZESPRI<sup>® </sup>GOLD kiwifruit (a fruit high in ascorbic acid and carotenoids) with an iron fortified breakfast cereal meal increases iron status in women with low iron stores.</p> <p>Methods/Design</p> <p>Eighty nine healthy women aged 18-44 years with low iron stores (serum ferritin (SF) ≤ 25 μg/L, haemoglobin (Hb) ≥ 115 g/L) living in Auckland, New Zealand were randomised to receive an iron fortified breakfast cereal (16 mg iron per serve) and either two ZESPRI<sup>® </sup>GOLD kiwifruit or a banana (low ascorbic acid and carotenoid content) to eat at breakfast time every day for 16 weeks. Iron status (SF, Hb, C-reactive protein (CRP) and soluble transferrin receptor (sTfR)), ascorbic acid and carotenoid status were measured at baseline and after 16 weeks. Anthropometric measures, dietary intake, physical activity and blood loss were measured before and after the 16 week intervention.</p> <p>Discussion</p> <p>This randomised controlled intervention study will be the first study to investigate the effect of a dietary based intervention of an iron fortified breakfast cereal meal combined with an ascorbic acid and carotenoid rich fruit on improving iron status in women with low iron stores.</p> <p>Trial registration</p> <p>ACTRN12608000360314</p
- …