9,732 research outputs found
Recommended from our members
Simulating the Martian Chemical Enivronment
We report on new analogue materials to simulate Martian rocks and soils, especially under realistic redox conditions
Recommended from our members
The Physio-Chemical Properties for the Interior of Enceladus
We have reviewed the current physical and chemical conditions of the Enceladus sub-surface environment, including the composition, temperature, pH and pressure. Here we have defined some of these parameters and, through the aid of modelling, will define and refine the remaining parameters needed for our experimental work. Simulations of the chemical reactions occurring within Enceladus can then be carried
out to advance our understanding of the internal environment of Enceladus and help evaluate its potential habitability. Once a better understanding of the chemical reactions occurring at the rock-water interface has been carried out, then potential analogues on Earth can be evaluated and known microbial life can be tested to see if it could survive the conditions of Enceladus
The reaction at threshold in chiral perturbation theory
In the framework of heavy baryon chiral perturbation theory, we give thIn the
framework of heavy baryon chiral perturbation theory, we give the chiral
expansion for the threshold amplitudes and to
quadratic order in the pion mass. The theoretical results agree within one
standard deviation with the empirical values. We also derive a relation between
the two threshold amplitudes of the reaction and the S--wave scattering lengths, and , respectively, to order
. We show that there are uncertainties mostly related to
resonance excitation which make an accurate determination of the
scattering length from the threshold amplitudes at present
very difficult. The situation is different in the isospin two final
state. Here, the chiral series converges and one finds consistent with the one--loop chiral perturbation theory prediction.Comment: 30 pp, LaTeX file, uses epsf, 6 figures (appended), corrections in
sections 5 and 6, conclusions unchange
Weight Vectors of the Basic A_1^(1)-Module and the Littlewood-Richardson Rule
The basic representation of \A is studied. The weight vectors are
represented in terms of Schur functions. A suitable base of any weight space is
given. Littlewood-Richardson rule appears in the linear relations among weight
vectors.Comment: February 1995, 7pages, Using AMS-Te
Comment on "Two Phase Transitions in the Fully frustrated XY Model"
The conclusions of a recent paper by Olsson (Phys. Rev. Lett. 75, 2758
(1995), cond-mat/9506082) about the fully frustrated XY model in two dimensions
are questioned. In particular, the evidence presented for having two separate
chiral and U(1) phase transitions are critically considered.Comment: One page one table, to Appear in Physical Review Letter
Training materials for different categories of users
Agricultural and Food Policy, Environmental Economics and Policy, Farm Management, Land Economics/Use, Production Economics, Teaching/Communication/Extension/Profession,
Vortex dynamics for two-dimensional XY models
Two-dimensional XY models with resistively shunted junction (RSJ) dynamics
and time dependent Ginzburg-Landau (TDGL) dynamics are simulated and it is
verified that the vortex response is well described by the Minnhagen
phenomenology for both types of dynamics. Evidence is presented supporting that
the dynamical critical exponent in the low-temperature phase is given by
the scaling prediction (expressed in terms of the Coulomb gas temperature
and the vortex renormalization given by the dielectric constant
) both for RSJ and TDGL
and that the nonlinear IV exponent a is given by a=z+1 in the low-temperature
phase. The results are discussed and compared with the results of other recent
papers and the importance of the boundary conditions is emphasized.Comment: 21 pages including 15 figures, final versio
From scalar to string confinement
We outline a connection between scalar quark confinement, a
phenomenologically successful concept heretofore lacking fundamental
justification, and QCD. Although scalar confinement does not follow from QCD,
there is an interesting and close relationship between them. We develop a
simple model intermediate between scalar confinement and the QCD string for
illustrative purposes. Finally, we find the bound state masses of scalar,
time-component vector, and string confinement analytically through
semi-classical quantization.Comment: ReVTeX, 9 pages, 5 figure
Modeling pollinating bee visitation rates in heterogeneous landscapes from foraging theory
Pollination by bees is important for food production. Recent concerns about the declines of both domestic and wild bees, calls for measures to promote wild pollinator populations in farmland. However, to be able to efficiently promote and prioritize between measures that benefit pollinators, such as modified land use, agri-environment schemes, or specific conservation measures, it is important to have a tool that accurately predicts how bees use landscapes and respond to such measures. In this paper we compare an existing model for predicting pollination (the “Lonsdorf model”), with an extension of a general model for habitat use of central place foragers (the “CPF model”). The Lonsdorf model has been shown to perform relatively well in simple landscapes, but not in complex landscapes. We hypothesized that this was because it lacks a behavioral component, assuming instead that bees in essence diffuse out from the nest into the landscape. By adding a behavioral component, the CPF model in contrast assumes that bees only use those parts of the landscape that enhances their fitness, completely avoiding foraging in other parts of the landscape. Because foraging is directed towards the most rewarding foraging habitat patches as determined by quality and distance, foraging habitat will include a wide range of forage qualities close to the nest, but a much narrower range farther away. We generate predictions for both simple and complex hypothetical landscapes, to illustrate the effect of including the behavioral rule, and for real landscapes. In the real landscapes the models give similar predictions for visitation rates in simple landscapes, but more different predictions in heterogeneous landscapes. We also analyze the consequences of introducing hedgerows near a mass-flowering crop field under each model. The Lonsdorf model predicts that any habitat improvement will enhance pollination of the crop. In contrast, the CPF model predicts that the hedgerow must provide good nesting sites, and not just foraging opportunities, for it to benefit pollination of the crop, because good forage quality alone may drain bees away from the field. Our model can be used to optimize pollinator mitigation measures in real landscapes
- …