37,383 research outputs found

    Width and extremal height distributions of fluctuating interfaces with window boundary conditions

    Full text link
    We present a detailed study of squared local roughness (SLRDs) and local extremal height distributions (LEHDs), calculated in windows of lateral size ll, for interfaces in several universality classes, in substrate dimensions ds=1d_s = 1 and ds=2d_s = 2. We show that their cumulants follow a Family-Vicsek type scaling, and, at early times, when ξ≪l\xi \ll l (ξ\xi is the correlation length), the rescaled SLRDs are given by log-normal distributions, with their nnth cumulant scaling as (ξ/l)(n−1)ds(\xi/l)^{(n-1)d_s}. This give rise to an interesting temporal scaling for such cumulants ⟨wn⟩c∼tγn\left\langle w_n \right\rangle_c \sim t^{\gamma_n}, with γn=2nβ+(n−1)ds/z=[2n+(n−1)ds/α]β\gamma_n = 2 n \beta + {(n-1)d_s}/{z} = \left[ 2 n + {(n-1)d_s}/{\alpha} \right] \beta. This scaling is analytically proved for the Edwards-Wilkinson (EW) and Random Deposition interfaces, and numerically confirmed for other classes. In general, it is featured by small corrections and, thus, it yields exponents γn\gamma_n's (and, consequently, α\alpha, β\beta and zz) in nice agreement with their respective universality class. Thus, it is an useful framework for numerical and experimental investigations, where it is, usually, hard to estimate the dynamic zz and mainly the (global) roughness α\alpha exponents. The stationary (for ξ≫l\xi \gg l) SLRDs and LEHDs of Kardar-Parisi-Zhang (KPZ) class are also investigated and, for some models, strong finite-size corrections are found. However, we demonstrate that good evidences of their universality can be obtained through successive extrapolations of their cumulant ratios for long times and large ll's. We also show that SLRDs and LEHDs are the same for flat and curved KPZ interfaces.Comment: 11 pages, 10 figures, 4 table

    Stellar archeology of the nearby LINER galaxies NGC 4579 and NGC 4736

    Full text link
    Stellar archeology of nearby LINER galaxies may reveal if there is a stellar young population that may be responsible for the LINER phenomenon. We show results for the classical LINER galaxies NGC 4579 and NGC 4736 and find no evidence of such populations.Comment: 2 pages, 2 figures, to be published in the Proceedings of the IAU Symposium no. 26

    Mapping low and high density clouds in astrophysical nebulae by imaging forbidden line emission

    Full text link
    Emission line ratios have been essential for determining physical parameters such as gas temperature and density in astrophysical gaseous nebulae. With the advent of panoramic spectroscopic devices, images of regions with emission lines related to these physical parameters can, in principle, also be produced. We show that, with observations from modern instruments, it is possible to transform images taken from density sensitive forbidden lines into images of emission from high and low-density clouds by applying a transformation matrix. In order to achieve this, images of the pairs of density sensitive lines as well as the adjacent continuum have to be observed and combined. We have computed the critical densities for a series of pairs of lines in the infrared, optical, ultraviolet and X-rays bands, and calculated the pair line intensity ratios in the high and low-density limit using a 4 and 5 level atom approximation. In order to illustrate the method we applied it to GMOS-IFU data of two galactic nuclei. We conclude that this method provides new information of astrophysical interest, especially for mapping low and high-density clouds; for this reason we call it "the ld/hd imaging method".Comment: 7 pages, 4 figures, accepted for publication on MNRA

    Initial pseudo-steady state & asymptotic KPZ universality in semiconductor on polymer deposition

    Full text link
    The Kardar-Parisi-Zhang (KPZ) class is a paradigmatic example of universality in nonequilibrium phenomena, but clear experimental evidences of asymptotic 2D-KPZ statistics are still very rare, and far less understanding stems from its short-time behavior. We tackle such issues by analyzing surface fluctuations of CdTe films deposited on polymeric substrates, based on a huge spatio-temporal surface sampling acquired through atomic force microscopy. A \textit{pseudo}-steady state (where average surface roughness and spatial correlations stay constant in time) is observed at initial times, persisting up to deposition of ∼104\sim 10^{4} monolayers. This state results from a fine balance between roughening and smoothening, as supported by a phenomenological growth model. KPZ statistics arises at long times, thoroughly verified by universal exponents, spatial covariance and several distributions. Recent theoretical generalizations of the Family-Vicsek scaling and the emergence of log-normal distributions during interface growth are experimentally confirmed. These results confirm that high vacuum vapor deposition of CdTe constitutes a genuine 2D-KPZ system, and expand our knowledge about possible substrate-induced short-time behaviors.Comment: 13 pages, 8 figures, 2 table

    Experimentally Witnessing the Quantumness of Correlations

    Full text link
    The quantification of quantum correlations (other than entanglement) usually entails laboured numerical optimization procedures also demanding quantum state tomographic methods. Thus it is interesting to have a laboratory friendly witness for the nature of correlations. In this Letter we report a direct experimental implementation of such a witness in a room temperature nuclear magnetic resonance system. In our experiment the nature of correlations is revealed by performing only few local magnetization measurements. We also compare the witness results with those for the symmetric quantum discord and we obtained a fairly good agreement
    • …
    corecore