17 research outputs found

    Detection of large deletions in the LDL receptor gene with quantitative PCR methods

    Get PDF
    BACKGROUND: Familial Hypercholesterolemia (FH) is a common genetic disease and at the molecular level most often due to mutations in the LDL receptor gene. In genetically heterogeneous populations, major structural rearrangements account for about 5% of patients with LDL receptor gene mutations. METHODS: In this study we tested the ability of two different quantitative PCR methods, i.e. Real-Time PCR and Multiplex Ligation-Dependent Probe Amplification (MLPA), to detect deletions in the LDL receptor gene. We also reassessed the contribution of major structural rearrangements to the mutational spectrum of the LDL receptor gene in Denmark. RESULTS: With both methods it was possible to discriminate between one and two copies of the LDL receptor gene exon 5, but the MLPA method was cheaper, and it was far more accurate and precise than Real-Time PCR. In five of 318 patients with an FH phenotype, MLPA analysis revealed five different deletions in the LDL receptor gene. CONCLUSION: The MLPA method was accurate, precise and at the same time effective in screening a large number of FH patients for large deletions in the LDL receptor gene

    Constitutive gene expression profile segregates toxicity in locally advanced breast cancer patients treated with high-dose hyperfractionated radical radiotherapy

    Get PDF
    Breast cancer patients show a wide variation in normal tissue reactions after radiotherapy. The individual sensitivity to x-rays limits the efficiency of the therapy. Prediction of individual sensitivity to radiotherapy could help to select the radiation protocol and to improve treatment results. The aim of this study was to assess the relationship between gene expression profiles of ex vivo un-irradiated and irradiated lymphocytes and the development of toxicity due to high-dose hyperfractionated radiotherapy in patients with locally advanced breast cancer. Raw data from microarray experiments were uploaded to the Gene Expression Omnibus Database (GEO accession GSE15341). We obtained a small group of 81 genes significantly regulated by radiotherapy, lumped in 50 relevant pathways. Using ANOVA and t-test statistical tools we found 20 and 26 constitutive genes (0 Gy) that segregate patients with and without acute and late toxicity, respectively. Non-supervised hierarchical clustering was used for the visualization of results. Six and 9 pathways were significantly regulated respectively. Concerning to irradiated lymphocytes (2 Gy), we founded 29 genes that separate patients with acute toxicity and without it. Those genes were gathered in 4 significant pathways. We could not identify a set of genes that segregates patients with and without late toxicity. In conclusion, we have found an association between the constitutive gene expression profile of peripheral blood lymphocytes and the development of acute and late toxicity in consecutive, unselected patients. These observations suggest the possibility of predicting normal tissue response to irradiation in high-dose non-conventional radiation therapy regimens. Prospective studies with higher number of patients are needed to validate these preliminary results

    Aberrant CDKN1A transcriptional response associates with abnormal sensitivity to radiation treatment

    Get PDF
    Normal tissue reactions to radiation therapy vary in severity among patients and cannot be accurately predicted, limiting treatment doses. The existence of heritable radiosensitivity syndromes suggests that normal tissue reaction severity is determined, at least in part, by genetic factors and these may be revealed by differences in gene expression. To test this hypothesis, peripheral blood lymphocyte cultures from 22 breast cancer patients with either minimal (11) or very severe acute skin reactions (11) have been used to analyse gene expression. Basal and post-irradiation expression of four radiation-responsive genes (CDKN1A, GADD45A, CCNB1, and BBC3) was determined by quantitative real-time PCR in T-cell cultures established from the two patient groups before radiotherapy. Relative expression levels of BBC3, CCNB1, and GADD45A 2 h following 2 Gy X-rays did not discriminate between groups. However, post-irradiation expression response was significantly reduced for CDKN1A (P<0.002) in severe reactors compared to normal. Prediction of reaction severity of ∼91% of individuals sampled was achieved using this end point. Analysis of TP53 Arg72Pro and CDKN1A Ser31Arg single nucleotide polymorphisms did not show any significant association with reaction sensitivity. Although these results require confirmation and extension, this study demonstrates the possibility of predicting the severity of acute skin radiation toxicity in simple tests

    Combined low initial DNA damage and high radiation-induced apoptosis confers clinical resistance to long-term toxicity in breast cancer patients treated with high-dose radiotherapy

    Get PDF
    Journal Article; Research Support, Non-U.S. Gov't;BACKGROUND. Either higher levels of initial DNA damage or lower levels of radiation-induced apoptosis in peripheral blood lymphocytes have been associated to increased risk for develop late radiation-induced toxicity. It has been recently published that these two predictive tests are inversely related. The aim of the present study was to investigate the combined role of both tests in relation to clinical radiation-induced toxicity in a set of breast cancer patients treated with high dose hyperfractionated radical radiotherapy. METHODS. Peripheral blood lymphocytes were taken from 26 consecutive patients with locally advanced breast carcinoma treated with high-dose hyperfractioned radical radiotherapy. Acute and late cutaneous and subcutaneous toxicity was evaluated using the Radiation Therapy Oncology Group morbidity scoring schema. The mean follow-up of survivors (n = 13) was 197.23 months. Radiosensitivity of lymphocytes was quantified as the initial number of DNA double-strand breaks induced per Gy and per DNA unit (200 Mbp). Radiation-induced apoptosis (RIA) at 1, 2 and 8 Gy was measured by flow cytometry using annexin V/propidium iodide. RESULTS. Mean DSB/Gy/DNA unit obtained was 1.70 ± 0.83 (range 0.63-4.08; median, 1.46). Radiation-induced apoptosis increased with radiation dose (median 12.36, 17.79 and 24.83 for 1, 2, and 8 Gy respectively). We observed that those "expected resistant patients" (DSB values lower than 1.78 DSB/Gy per 200 Mbp and RIA values over 9.58, 14.40 or 24.83 for 1, 2 and 8 Gy respectively) were at low risk of suffer severe subcutaneous late toxicity (HR 0.223, 95%CI 0.073-0.678, P = 0.008; HR 0.206, 95%CI 0.063-0.677, P = 0.009; HR 0.239, 95%CI 0.062-0.929, P = 0.039, for RIA at 1, 2 and 8 Gy respectively) in multivariate analysis. CONCLUSIONS. A radiation-resistant profile is proposed, where those patients who presented lower levels of initial DNA damage and higher levels of radiation induced apoptosis were at low risk of suffer severe subcutaneous late toxicity after clinical treatment at high radiation doses in our series. However, due to the small sample size, other prospective studies with higher number of patients are needed to validate these results.This work was subsidized by a grant from the Ministerio de Educación y Ciencia (CICYT: SAF 2004-00889) and Fundación del Instituto Canario de Investigación del Cáncer (FICIC).Yes2011-0

    Detection of a novel exon 4 low-density lipoprotein receptor gene deletion in a swiss family with severe familial hypercholesterolemia

    Full text link
    Familial hypercholesterolemia (FH) is an autosomal dominant disease which results in 2-3-fold elevated cholesterol levels and in accelerated atherosclerosis. FH is caused by small mutations or larger rearrangements in the low-density lipoprotein receptor (LDLR). Here, we report that screening the LDLR gene in a Swiss family (n = 15) with clinical symptoms of FH by combined single strand conformation polymorphism and long-distance PCR identified a novel 1.3 kb deletion in the LDLR. The deletion eliminated exon 4 of the LDLR presumably by recombination between two identical 25 bp repeats present in intron 3 and 4. The 25 bp sequence in intron 3 is part of an Alu repeat, whereas no homology to Alu repeats was found for the intron 4 region. This 1.3 kb LDLR deletion allele cosegregated with elevated cholesterol levels over three generations. Even on high-dose statin therapy, carriers of the deletion averaged 1.6 times higher cholesterol levels and 1.9 times higher apolipoprotein B-100 (apoB-100) levels than non-carriers who had lipid and apoB-100 levels within the range of the Swiss population. Most affected members of the first and second generation of this family had experienced a first myocardial infarction (MI) before the age of 55 years and most LDLR gene deletion carriers older than 40 years showed severe coronary artery disease (CAD). Hence, we conclude that deletion of exon 4 in the LDLR gene drastically decreases low-density lipoprotein binding leading to severe hypercholesterolemia

    Radiobiologic response of medulloblastoma cell lines: involvement of beta-catenin?

    No full text
    Medulloblastoma (MB) is the most common brain malignancy in children. Whole neural axis irradiation is the treatment of choice, but it often results in long-term neurocognitive and developmental impairment. Only insights into MB biology will lead to improved therapeutic outcome. Wingless (WNT) signalling deregulation occurs in up to 25% of sporadic tumors, but the specific role of nuclear beta-catenin and its involvement in the radioresponse remains unsettled. Therefore we studied the gamma-radiation response of two MB cell lines from cellular and molecular points of view. Our data show that the p53 wild-type cell line is more sensitive to ionizing radiations (IR) than the p53 mutated line, but apoptosis is also induced in p53-mutated cells, suggesting an alternative p53-independent mechanism. In addition, this study is the first to demonstrate that gamma-rays trigger the WNT system in our in vitro models. Further studies are required to test if this could explain the radiosensitivity of MB and the favorable prognostic value of nuclear beta-catenin in this tumor
    corecore