773 research outputs found

    Molecular line and continuum study of the W40 cloud

    Get PDF
    The dense cloud associated with W40, one of the nearby H II regions, has been studied in millimeter-wave molecular lines and in 1.2 mm continuum. Besides, 1280 MHz and 610 MHz interferometric observations have been done. The cloud has complex morphological and kinematical structure, including a clumpy dust ring and an extended dense core. The ring is probably formed by the "collect and collapse" process due to the expansion of neighboring H II region. Nine dust clumps in the ring have been deconvolved. Their sizes, masses and peak hydrogen column densities are: 0.020.11\sim 0.02-0.11 pc, 0.48.1M\sim 0.4-8.1 M_{\odot} and (2.511)×1022\sim (2.5-11)\times 10^{22} cm2^{-2}, respectively. Molecular lines are observed at two different velocities and have different spatial distributions implying strong chemical differentiation over the region. The CS abundance is enhanced towards the eastern dust clump 2, while the NH3_3, N2_2H+^+, and H13^{13}CO+^+ abundances are enhanced towards the western clumps. HCN and HCO+^+ do not correlate with the dust probably tracing the surrounding gas. Number densities derived towards selected positions are: (0.33.2)×106\sim (0.3-3.2)\times 10^6 cm3^{-3}. Two western clumps have kinetic temperatures 21 K and 16 K and are close to virial equilibrium. The eastern clumps 2 and 3 are more massive, have higher extent of turbulence and are probably more evolved than the western ones. They show asymmetric CS(2--1) line profiles due to infalling motions which is confirmed by model calculations. An interaction between ionized and neutral material is taking place in the vicinity of the eastern branch of the ring and probably trigger star formation.Comment: 16 pages, 6 figure

    Multi-wavelength study of the star-formation in the S237 H II region

    Full text link
    We present a detailed multi-wavelength study of observations from X-ray, near-infrared to centimeter wavelengths to probe the star formation processes in the S237 region. Multi-wavelength images trace an almost sphere-like shell morphology of the region, which is filled with the 0.5--2 keV X-ray emission. The region contains two distinct environments - a bell-shaped cavity-like structure containing the peak of 1.4 GHz emission at center, and elongated filamentary features without any radio detection at edges of the sphere-like shell - where {\it Herschel} clumps are detected. Using the 1.4 GHz continuum and 12^{12}CO line data, the S237 region is found to be excited by a radio spectral type of B0.5V star and is associated with an expanding H{\sc ii} region. The photoionized gas appears to be responsible for the origin of the bell-shaped structure. The majority of molecular gas is distributed toward a massive {\it Herschel} clump (Mclump_{clump} \sim260 M_{\odot}), which contains the filamentary features and has a noticeable velocity gradient. The photometric analysis traces the clusters of young stellar objects (YSOs) mainly toward the bell-shaped structure and the filamentary features. Considering the lower dynamical age of the H\,{\sc ii} region (i.e. 0.2-0.8 Myr), these clusters are unlikely to be formed by the expansion of the H\,{\sc ii} region. Our results also show the existence of a cluster of YSOs and a massive clump at the intersection of filamentary features, indicating that the collisions of these features may have triggered cluster formation, similar to those found in Serpens South region.Comment: 21 pages, 14 figures, 1 table, Accepted for publication in The Astrophysical Journa

    Study of the filamentary infrared dark cloud G192.76+00.10 in the S254-S258 OB complex

    Full text link
    We present results of a high resolution study of the filamentary infrared dark cloud G192.76+00.10 in the S254-S258 OB complex in several molecular species tracing different physical conditions. These include three isotopologues of carbon monoxide (CO), ammonia (NH3_3), carbon monosulfide (CS). The aim of this work is to study the general structure and kinematics of the filamentary cloud, its fragmentation and physical parameters. The gas temperature is derived from the NH3_3 (J,K)=(1,1),(2,2)(J,K) = (1,1), (2,2) and 12^{12}CO(2--1) lines and the 13^{13}CO(1--0), 13^{13}CO(2--1) emission is used to investigate the overall gas distribution and kinematics. Several dense clumps are identified from the CS(2--1) data. Values of the gas temperature lie in the ranges 103510-35 K, column density N(H2)N(\mathrm{H}_2) reaches the value 5.1 1022^{22} cm2^{-2}. The width of the filament is of order 1 pc. The masses of the dense clumps range from 30 \sim 30 M_\odot to 160 \sim 160 M_\odot. They appear to be gravitationally unstable. The molecular emission shows a gas dynamical coherence along the filament. The velocity pattern may indicate longitudinal collapse.Comment: 10 pages, 9 figures, accepted for publication in Research in Astronomy and Astrophysic

    Star Formation Activity in the Galactic HII Complex S255-S257

    Full text link
    We present results on the star-formation activity of an optically obscured region containing an embedded cluster (S255-IR) and molecular gas between two evolved HII regions S255 and S257. We have studied the complex using optical, near-infrared (NIR) imaging, optical spectroscopy and radio continnum mapping at 15 GHz, along with Spitzer-IRAC results. It is found that the main exciting sources of the evolved HII regions S255 and S257 and the compact HII regions associated with S255-IR are of O9.5 - B3 V nature, consistent with previous observations. Our NIR observations reveal 109 likely young stellar object (YSO) candidates in an area of ~ 4'.9 x 4'.9 centered on S255-IR, which include 69 new YSO candidates. Our observations increased the number of previously identified YSOs in this region by 32%. To see the global star formation, we constructed the V-I/V diagram for 51 optically identified IRAC YSOs in an area of ~ 13' x 13' centered on S255-IR. We suggest that these YSOs have an approximate age between 0.1 - 4 Myr, indicating a non-coeval star formation. Using spectral energy distribution models, we constrained physical properties and evolutionary status of 31 and 16 YSO candidates outside and inside the gas ridge, respectively. The models suggest that the sources associated within the gas ridge are of younger population (mean age ~ 1.2 Myr) than the sources outside the gas ridge (mean age ~ 2.5 Myr). The positions of the young sources inside the gas ridge at the interface of the HII regions S255 and S257, favor a site of induced star formation.Comment: 46 pages, 14 figures, 5 tables. Accepted for publication in The Astrophysical Journa

    NGC 7538 : Multiwavelength Study of Stellar Cluster Regions associated with IRS 1-3 and IRS 9 sources

    Full text link
    We present deep and high-resolution (FWHM ~ 0.4 arcsec) near-infrared (NIR) imaging observations of the NGC 7538 IRS 1-3 region (in JHK bands), and IRS 9 region (in HK bands) using the 8.2m Subaru telescope. The NIR analysis is complemented with GMRT low-frequency observations at 325, 610, and 1280 MHz, molecular line observations of H13CO+ (J=1-0), and archival Chandra X-ray observations. Using the 'J-H/H-K' diagram, 144 Class II and 24 Class I young stellar object (YSO) candidates are identified in the IRS 1-3 region. Further analysis using 'K/H-K' diagram yields 145 and 96 red sources in the IRS 1-3 and IRS 9 regions, respectively. A total of 27 sources are found to have X-ray counterparts. The YSO mass function (MF), constructed using a theoretical mass-luminosity relation, shows peaks at substellar (~0.08-0.18 Msolar) and intermediate (~1-1.78 Msolar) mass ranges for the IRS 1-3 region. The MF can be fitted by a power law in the low mass regime with a slope of Gamma ~ 0.54-0.75, which is much shallower than the Salpeter value of 1.35. An upper limit of 10.2 is obtained for the star to brown dwarf ratio in the IRS 1-3 region. GMRT maps show a compact HII region associated with the IRS 1-3 sources, whose spectral index of 0.87+-0.11 suggests optical thickness. This compact region is resolved into three separate peaks in higher resolution 1280 MHz map, and the 'East' sub-peak coincides with the IRS 2 source. H13CO+ (J=1-0) emission reveals peaks in both IRS 1-3 and IRS 9 regions, none of which are coincident with visible nebular emission, suggesting the presence of dense cloud nearby. The virial masses are approximately of the order of 1000 Msolar and 500 Msolar for the clumps in IRS 1-3 and IRS 9 regions, respectively.Comment: 27 pages, 18 figures, 5 tables. Accepted for publication in MNRA

    A Multi-Wavelength High Resolution Study of the S255 Star Forming Region. General structure and kinematics

    Get PDF
    We present observational data for two main components (S255IR and S255N) of the S255 high mass star forming region in continuum and molecular lines obtained at 1.3 mm and 1.1 mm with the SMA, at 1.3 cm with the VLA and at 23 and 50 cm with the GMRT. The angular resolution was from ~ 2" to ~ 5" for all instruments. With the SMA we detected a total of about 50 spectral lines of 20 different molecules (including isotopologues). About half of the lines and half of the species (in particular N2H+, SiO, C34S, DCN, DNC, DCO+, HC3N, H2CO, H2CS, SO2) have not been previously reported in S255IR and partly in S255N at high angular resolution. Our data reveal several new clumps in the S255IR and S255N areas by their millimeter wave continuum emission. Masses of these clumps are estimated at a few solar masses. The line widths greatly exceed expected thermal widths. These clumps have practically no association with NIR or radio continuum sources, implying a very early stage of evolution. At the same time, our SiO data indicate the presence of high-velocity outflows related to some of these clumps. In some cases, strong molecular emission at velocities of the quiescent gas has no detectable counterpart in the continuum. We discuss the main features of the distribution of NH3, N2H+, and deuterated molecules. We estimate properties of decimeter wave radio continuum sources and their relationship with the molecular material.Comment: 21 pages, 26 figures, accepted for publication in Astrophysical Journa
    corecore