21 research outputs found
Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes.
Although several lung cancer susceptibility loci have been identified, much of the heritability for lung cancer remains unexplained. Here 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated genome-wide association study (GWAS) analysis of lung cancer in 29,266 cases and 56,450 controls. We identified 18 susceptibility loci achieving genome-wide significance, including 10 new loci. The new loci highlight the striking heterogeneity in genetic susceptibility across the histological subtypes of lung cancer, with four loci associated with lung cancer overall and six loci associated with lung adenocarcinoma. Gene expression quantitative trait locus (eQTL) analysis in 1,425 normal lung tissue samples highlights RNASET2, SECISBP2L and NRG1 as candidate genes. Other loci include genes such as a cholinergic nicotinic receptor, CHRNA2, and the telomere-related genes OFBC1 and RTEL1. Further exploration of the target genes will continue to provide new insights into the etiology of lung cancer
Varying constants, Gravitation and Cosmology
Fundamental constants are a cornerstone of our physical laws. Any constant
varying in space and/or time would reflect the existence of an almost massless
field that couples to matter. This will induce a violation of the universality
of free fall. It is thus of utmost importance for our understanding of gravity
and of the domain of validity of general relativity to test for their
constancy. We thus detail the relations between the constants, the tests of the
local position invariance and of the universality of free fall. We then review
the main experimental and observational constraints that have been obtained
from atomic clocks, the Oklo phenomenon, Solar system observations, meteorites
dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic
microwave background and big bang nucleosynthesis. At each step we describe the
basics of each system, its dependence with respect to the constants, the known
systematic effects and the most recent constraints that have been obtained. We
then describe the main theoretical frameworks in which the low-energy constants
may actually be varying and we focus on the unification mechanisms and the
relations between the variation of different constants. To finish, we discuss
the more speculative possibility of understanding their numerical values and
the apparent fine-tuning that they confront us with.Comment: 145 pages, 10 figures, Review for Living Reviews in Relativit