7,837 research outputs found
Two types of nematicity in the phase diagram of the cuprate superconductor YBaCuO
Nematicity has emerged as a key feature of cuprate superconductors, but its
link to other fundamental properties such as superconductivity, charge order
and the pseudogap remains unclear. Here we use measurements of transport
anisotropy in YBaCuO to distinguish two types of nematicity. The
first is associated with short-range charge-density-wave modulations in a
doping region near . It is detected in the Nernst coefficient, but
not in the resistivity. The second type prevails at lower doping, where there
are spin modulations but no charge modulations. In this case, the onset of
in-plane anisotropy - detected in both the Nernst coefficient and the
resistivity - follows a line in the temperature-doping phase diagram that
tracks the pseudogap energy. We discuss two possible scenarios for the latter
nematicity.Comment: 8 pages and 7 figures. Main text and supplementary material now
combined into single articl
Research Investments and Market Structure in the Food Processing, Agricultural Input, and Biofuel Industries Worldwide
Meeting growing global demand for food, fiber, and biofuel requires robust investment in agricultural research and development (R&D) from both public and private sectors. This study examines global R&D spending by private industry in seven agricultural input sectors, food manufacturing, and biofuel and describes the changing structure of these industries. In 2007 (the latest year for which comprehensive estimates are available), the private sector spent 19.7 billion on food and agricultural research (56 percent in food manufacturing and 44 percent in agricultural input sectors) and accounted for about half of total public and private spending on food and agricultural R&D in high-income countries. In R&D related to biofuel, annual private-sector investments are estimated to have reached 1.47 billion worldwide by 2009. Incentives to invest in R&D are influenced by market structure and other factors. Agricultural input industries have undergone significant structural change over the past two decades, with industry concentration on the rise. A relatively small number of large, multinational firms with global R&D and marketing networks account for most R&D in each input industry. Rising market concentration has not generally been associated with increased R&D investment as a percentage of industry sales.agricultural biotechnology, agricultural chemicals, agricultural inputs, animal breeding, animal health, animal nutrition, aquaculture, biofuel, concentration ratio, crop breeding, crop protection, farm machinery, fertilizers, Herfindahl index, globalization, market share, market structure, research intensity, seed improvement, Productivity Analysis,
Interpretation of y-scaling of the nuclear response
The behavior of the nuclear matter response in the region of large momentum
transfer, in which plane wave impulse approximation predicts the onset of
y-scaling, is discussed. The theoretical analysis shows that scaling violations
produced by final state interactions are driven by the momentum dependence of
the nucleon-nucleon scattering cross section.
Their study may provide valuable information on possible modifications of
nucleon-nucleon scattering in the nuclear medium.Comment: 4 pages with 3 figures. To appear in Physical Review Letter
Superscaling in inclusive electron-nucleus scattering
We investigate the degree to which the scaling functions derived
from cross sections for inclusive electron-nucleus quasi-elastic scattering
define the same function for different nuclei. In the region where the scaling
variable , we find that this superscaling is experimentally realized
to a high degree.Comment: Corrected previously mislabeled figures and cross references; 9
pages, 4 color figures, using BoxedEPS and REVTeX; email correspondence to
[email protected]
Quantum Monte Carlo calculations of the one-body density matrix and excitation energies of silicon
Quantum Monte Carlo (QMC) techniques are used to calculate the one-body
density matrix and excitation energies for the valence electrons of bulk
silicon. The one-body density matrix and energies are obtained from a
Slater-Jastrow wave function with a determinant of local density approximation
(LDA) orbitals. The QMC density matrix evaluated in a basis of LDA orbitals is
strongly diagonally dominant. The natural orbitals obtained by diagonalizing
the QMC density matrix resemble the LDA orbitals very closely. Replacing the
determinant of LDA orbitals in the wave function by a determinant of natural
orbitals makes no significant difference to the quality of the wave function's
nodal surface, leaving the diffusion Monte Carlo energy unchanged. The Extended
Koopmans' Theorem for correlated wave functions is used to calculate excitation
energies for silicon, which are in reasonable agreement with the available
experimental data. A diagonal approximation to the theorem, evaluated in the
basis of LDA orbitals, works quite well for both the quasihole and
quasielectron states. We have found that this approximation has an advantageous
scaling with system size, allowing more efficient studies of larger systems.Comment: 13 pages, 4 figures. To appear in Phys. Rev.
Nuclear Physics with Electroweak Probes
In recent years, the italian theoretical Nuclear Physics community has played
a leading role in the development of a unified approach, allowing for a
consistent and fully quantitative description of the nuclear response to
electromagnetic and weak probes. In this paper I review the main achievements
in both fields, point out some of the open problems, and outline the most
promising prospects.Comment: Invited Talk at the XII Workshop on Theoretical Nuclear Physics in
Italy, Cortona, October 8-10, 200
- …