151 research outputs found

    Global well-posedness for the KP-I equation on the background of a non localized solution

    Full text link
    We prove that the Cauchy problem for the KP-I equation is globally well-posed for initial data which are localized perturbations (of arbitrary size) of a non-localized (i.e. not decaying in all directions) traveling wave solution (e.g. the KdV line solitary wave or the Zaitsev solitary waves which are localized in xx and yy periodic or conversely)

    Bounds for derivatives by means of differential operators

    No full text
    corecore