1,388 research outputs found
New results on Coulomb interaction effects in relativistic heavy ion collisions
The effects of the Coulomb interaction on charged pion production in Au+Au collisions at RHIC-BES energies are studied. From pT spectra of charged pions measured with STAR experiment, the negative-to-positive pion ratios as a
function of transverse momentum are obtained. Based of these pion ratio the finalstate Coulomb interaction can be investigated. The “Coulomb kick” (a momentum change due to Coulomb interaction) and initial pion ratio for RHIC-BES energies (7.7 GeV, 11.5 GeV, 19.6 GeV, 27 GeV and 39 GeV) and various centrality classes are obtained. The energy and centrality dependence of the Coulomb kick is presented.
These results are connected with the kinetic freeze-out dynamics
Centrality dependence of charged-particle pseudorapidity distributions from d+Au collisions at sqrt(s_{NN})=200 GeV
Charged-particle pseudorapidity densities are presented for the d+Au reaction
at sqrt{s_{NN}}=200 GeV with -4.2 <= eta <= 4.2$. The results, from the BRAHMS
experiment at RHIC, are shown for minimum-bias events and 0-30%, 30-60%, and
60-80% centrality classes. Models incorporating both soft physics and hard,
perturbative QCD-based scattering physics agree well with the experimental
results. The data do not support predictions based on strong-coupling,
semi-classical QCD. In the deuteron-fragmentation region the central 200 GeV
data show behavior similar to full-overlap d+Au results at sqrt{s_{NN}}=19.4
GeV.Comment: 4 pages, 3figures; expanded discussion of uncertainties; added 60-80%
centrality range; added additional discussion on centrality selection bia
High Pt Hadron Spectra at High Rapidity
We report the measurement of charged hadron production at different
pseudo-rapidity values in deuteron+gold as well as proton+proton collisions at
= 200GeV at RHIC. The nuclear modification factors and
are used to investigate new behaviors in the deuteron+gold system as
function of rapidity and the centrality of the collisions respectively.Comment: Nine pages 4 figures to be published in the QM2004 Proceedings, typos
corrected and one reference adde
Rapidity and centrality dependence of particle production for identified hadrons in Cu+Cu collisions at GeV
The BRAHMS collaboration has measured transverse momentum spectra of pions,
kaons, protons and antiprotons at rapidities 0 and 3 for Cu+Cu collisions at
GeV. As the collisions become more central the collective
radial flow increases while the temperature of kinetic freeze-out decreases.
The temperature is lower and the radial flow weaker at forward rapidity. Pion
and kaon yields with transverse momenta between 1.5 and 2.5 GeV/c are
suppressed for central collisions relative to scaled collisions. This
suppression, which increases as the collisions become more central is
consistent with jet quenching models and is also present with comparable
magnitude at forward rapidity. At such rapidities initial state effects may
also be present and persistence of the meson suppression to high rapidity may
reflect a combination of jet quenching and nuclear shadowing. The ratio of
protons to mesons increases as the collisions become more central and is
largest at forward rapidities.Comment: 19 pages, 11 figures and 6 table
Rapidity dependence of deuteron production in Au+Au collisions at = 200 GeV
We have measured the distributions of protons and deuterons produced in high
energy heavy ion Au+Au collisions at RHIC over a very wide range of transverse
and longitudinal momentum. Near mid-rapidity we have also measured the
distribution of anti-protons and anti-deuterons. We present our results in the
context of coalescence models. In particular we extract the "volume of
homogeneity" and the average phase-space density for protons and anti-protons.
Near central rapidity the coalescence parameter and the space
averaged phase-space density are very similar for both protons and
anti-protons. For protons we see little variation of either or the
space averaged phase-space density as the rapidity increases from 0 to 3.
However both these quantities depend strongly on at all rapidities. These
results are in contrast to lower energy data where the proton and anti-proton
phase-space densities are different at =0 and both and depend
strongly on rapidity.Comment: Document updated after proofs received from PR
Scanning the phases of QCD with BRAHMS
BRAHMS has the ability to study relativistic heavy ion collisions from the
final freeze-out of hadrons all the way back to the initial wave-function of
the gold nuclei. This is accomplished by studying hadrons with a very wide
range of momenta and angles. In doing so we can scan various phases of QCD,
from a hadron gas, to a quark gluon plasma and perhaps to a color glass
condensate.Comment: 8 pages, 6 figures, proceedings of plenary talk at Quark Matter 2004
conferenc
Quark Gluon Plasma an Color Glass Condensate at RHIC? The perspective from the BRAHMS experiment
We review the main results obtained by the BRAHMS collaboration on the
properties of hot and dense hadronic and partonic matter produced in
ultrarelativistic heavy ion collisions at RHIC. A particular focus of this
paper is to discuss to what extent the results collected so far by BRAHMS, and
by the other three experiments at RHIC, can be taken as evidence for the
formation of a state of deconfined partonic matter, the so called
quark-gluon-plasma (QGP). We also discuss evidence for a possible precursor
state to the QGP, i.e. the proposed Color Glass Condensate.Comment: 32 pages, 18 figure
Evolution of the nuclear modification factors with rapidity and centrality in d+Au collisions at $\sqrt{s_{NN}} = 200 GeV
We report on a study of the transverse momentum dependence of nuclear
modification factors for charged hadrons produced in deuteron + gold
collisions at GeV, as a function of collision centrality
and of the pseudorapidity () of the produced hadrons. We
find significant and systematic decrease of with increasing rapidity.
The midrapidity enhancement and the forward rapidity suppression are more
pronounced in central collisions relative to peripheral collisions. These
results are relevant to the study of the possible onset of gluon saturation at
RHIC energies.Comment: Four pages, four figures. Published in PRL. Figures 1 and 2 have been
updated, and several changes made to the tex
Recent Results from the BRAHMS Experiment
We present recent results obtained by the BRAHMS experiment at the
Relativistic Heavy Ion Collider (RHIC) for the systems of Au + Au and Cu + Cu
at \rootsnn{200} and at 62.4 GeV, and p + p at \rootsnn{200}. Nuclear
modification factors for Au + Au and Cu + Cu collisions are presented. Analysis
of anti-particle to particle ratios as a function of rapidity and collision
energy reveal that particle populations at the chemical freeze-out stage for
heavy-ion reactions at and above SPS energies are controlled by the baryon
chemical potential. From the particle spectra we deduce significant radial
expansion ( 0.75), as expected for systems created with a large
initial energy density. We also measure the elliptic flow parameter
versus rapidity and \ptn. We present rapidity dependent ratios within
for Au + Au and Cu + Cu at \rootsnn{200}. \Raa is found to increase
with decreasing collision energy, decreasing system size, and when going
towards more peripheral collisions. However, \Raa shows only a very weak
dependence on rapidity (for ), both for pions and protons.Comment: 16 pages and 14 figures, proceedings for plenary talk at Quark Matter
2005, Budapest, Hungar
The New Physics at RHIC. From Transparency to High p Suppression
Heavy ion collisions at RHIC energies (Au+Au collisions at
GeV) exhibit significant new features as compared to
earlier experiments at lower energies. The reaction is characterized by a high
degree of transparency of the collisions partners leading to the formation of a
baryon-poor central region. In this zone, particle production occurs mainly
from the stretching of the color field. The initial energy density is well
above the one considered necessary for the formation of the Quark Gluon Plasma,
QGP. The production of charged particles of various masses is consistent with
chemical and thermal equilibrium. Recently, a suppression of the high
transverse momentum component of hadron spectra has been observed in central
Au+Au collisions. This can be explained by the energy loss experienced by
leading partons in a medium with a high density of unscreened color charges. In
contrast, such high jets are not suppressed in d+Au collisions suggesting
that the high suppression is not due to initial state effects in the
ultrarelativistic colliding nuclei.Comment: 15 pages, 11 figures. to appear in Nucl. Physics A. Invited talk at
'Nucleus-Nucleus Collisions 2003' conference, Mosco
- …