2 research outputs found
Deformation and flow of a two-dimensional foam under continuous shear
We investigate the flow properties of a two-dimensional aqueous foam
submitted to a quasistatic shear in a Couette geometry. A strong localization
of the flow (shear banding) at the edge of the moving wall is evidenced,
characterized by an exponential decay of the average tangential velocity.
Moreover, the analysis of the rapid velocity fluctuations reveals self-similar
dynamical structures consisting of clusters of bubbles rolling as rigid bodies.
To relate the instantaneous (elastic) and time-averaged (plastic) components of
the strain, we develop a stochastic model where irreversible rearrangements are
activated by local stress fluctuations originating from the rubbing of the
wall. This model gives a complete description of our observations and is also
consistent with data obtained on granular shear bands by other groups.Comment: 5 pages, 2 figure