2,644 research outputs found

    The study of x-ray spectrum of the Coma cluster

    Full text link
    The X-ray spectrum of the Coma galaxy cluster was studied using the data from the XMM-Newton observatory. We combined 7 observations performed with the MOS camera of XMM-Newton in the 40'x 40' region centered at the Coma cluster. The analyzed observations were performed in 2000-2005 and have a total duration of 196 ksec. We focus on the analysis of the MOS camera spectra due to their lower affection by strong instrumental line-like background. The obtained spectrum was fitted with a model including contributions from the Solar system/Milky Way hot plasma and a power law X-ray background. The contribution of the instrumental background was modeled as a power law (not convolved with the effective area) and a number of Gaussian lines. The contribution from the Coma cluster was modeled with a single-temperature hot plasma emission. In addition, we searched for possible non-thermal radiation present in the vicinity of the center of the Coma cluster, originating e.g. from synchrotron emission of relativistic electrons on a turbulent magnetic field. We compared the results with previous works by other authors and spectra obtained from other instruments that operate in the similar energy range of 1-10 keV. Careful and detailed spectrum analysis shall be a necessary contribution to our future work - searching for axion-like particles' manifestations in the Coma cluster.Comment: 6 pages, 2 figures, 2 table

    Giant negative magnetoresistance in semiconductors doped by multiply charged deep impurities

    Get PDF
    A giant negative magnetoresistance has been observed in bulk germanium doped with multiply charged deep impurities. Applying a magnetic field the resistance may decrease exponentially at any orientation of the field. A drop of the resistance as much as about 10000% has been measured at 6 T. The effect is attributed to the spin splitting of impurity ground state with a very large g-factor in the order of several tens depending on impurity.Comment: 4 pages, 4 figure

    Non-Linear Algebra and Bogolubov's Recursion

    Full text link
    Numerous examples are given of application of Bogolubov's forest formula to iterative solutions of various non-linear equations: one and the same formula describes everything, from ordinary quadratic equation to renormalization in quantum field theory.Comment: LaTex, 21 page

    First Results of Magnetic Field Penetration Measurements of Multilayer SIS Structures

    Get PDF
    The performance of superconducting RF cavities made of bulk Nb is limited by a breakdown field of Bp ≈200 mT, close to the superheating field for Nb. A potentially promising solution to enhance the breakdown field of the SRF cavities beyond the intrinsic limits of Nb is a multilayer coating suggested in [1]. In the simplest case, such a multilayer may be a superconductor-insulator-superconductor (S-I-S) coating, for example, bulk niobium (S) coated with a thin film of insulator (I) followed by a thin layer of another superconductor (S) which could be e.g. dirty niobium [2]. Here we report the first results of our measurements of field penetration in Nb thin films and Nb-AlN-Nb multilayer samples at 4.2 K using the magnetic field penetration facility designed, built and tested in ASTeC

    Superradiance from an ultrathin film of three-level V-type atoms: Interplay between splitting, quantum coherence and local-field effects

    Get PDF
    We carry out a theoretical study of the collective spontaneous emission (superradiance) from an ultrathin film comprised of three-level atoms with VV-configuration of the operating transitions. As the thickness of the system is small compared to the emission wavelength inside the film, the local-field correction to the averaged Maxwell field is relevant. We show that the interplay between the low-frequency quantum coherence within the subspace of the upper doublet states and the local-field correction may drastically affect the branching ratio of the operating transitions. This effect may be used for controlling the emission process by varying the doublet splitting and the amount of low-frequency coherence.Comment: 15 pages, 5 figure

    Reflection of photons and azimuthal distribution of photoelectrons in a cylindrical beam pipe

    Get PDF
    In a cryogenic proton accelerator, such as the LHC, the creation of an electron cloud and generated heat loads resulting from electron bombardment are strongly dependent on the azimuthal distribution of created photoelectrons. In this context, photon reflection and photoelectron yield measurements have been performed using a beam line on the VEPP-2M storage ring. Six electrodes, covering the complete vacuum chamber perimeter, were mounted such that they could be suitably biased, and while one electrode was irradiated with synchrotron radiation the resulting electron current of all others could be measured. A detailed description of the experimental apparatus and the results of the measurements of photon reflection and the azimuthal distribution of generated photoelectrons are presented

    Discrete structure of ultrathin dielectric films and their surface optical properties

    Get PDF
    The boundary problem of linear classical optics about the interaction of electromagnetic radiation with a thin dielectric film has been solved under explicit consideration of its discrete structure. The main attention has been paid to the investigation of the near-zone optical response of dielectrics. The laws of reflection and refraction for discrete structures in the case of a regular atomic distribution are studied and the structure of evanescent harmonics induced by an external plane wave near the surface is investigated in details. It is shown by means of analytical and numerical calculations that due to the existence of the evanescent harmonics the laws of reflection and refraction at the distances from the surface less than two interatomic distances are principally different from the Fresnel laws. From the practical point of view the results of this work might be useful for the near-field optical microscopy of ultrahigh resolution.Comment: 25 pages, 16 figures, LaTeX2.09, to be published in Phys.Rev.
    • 

    corecore