1,057 research outputs found
Performance study update of observations in divergent mode for the Cherenkov Telescope Array
Due to the limited field of view (FoV) of Cherenkov telescopes, the time
needed to achieve target sensitivity for surveys of the extragalactic and
Galactic sky is large. To optimize the time spent to perform such surveys, a
so-called "divergent mode" of the Cherenkov Telescope Array Observatory (CTAO)
was proposed as an alternative observation strategy to the traditional parallel
pointing. In the divergent mode, each telescope points to a position in the sky
that is slightly offset, in the outward direction, from the original center of
the field of view. This bring the advantage of increasing the total
instantaneous arrays' FoV. From an enlarged field of view also benefits the
search for very-high-energy transient sources, making it possible to cover
large sky regions in follow-up observations, or to quickly cover the
probability sky map in case of Gamma Ray Bursts (GRB), Gravitational Waves
(GW), and other transient events. In this contribution, we present the proposed
implementation of the divergent pointing mode and its first preliminary
performance estimation for the southern CTAO array
Performance study update of observations in divergent mode for the Cherenkov Telescope Array
Due to the limited field of view (FoV) of Cherenkov telescopes, the time
needed to achieve target sensitivity for surveys of the extragalactic and
Galactic sky is large. To optimize the time spent to perform such surveys, a
so-called "divergent mode" of the Cherenkov Telescope Array Observatory (CTAO)
was proposed as an alternative observation strategy to the traditional parallel
pointing. In the divergent mode, each telescope points to a position in the sky
that is slightly offset, in the outward direction, from the original center of
the field of view. This bring the advantage of increasing the total
instantaneous arrays' FoV. From an enlarged field of view also benefits the
search for very-high-energy transient sources, making it possible to cover
large sky regions in follow-up observations, or to quickly cover the
probability sky map in case of Gamma Ray Bursts (GRB), Gravitational Waves
(GW), and other transient events. In this contribution, we present the proposed
implementation of the divergent pointing mode and its first preliminary
performance estimation for the southern CTAO array.Comment: Presented at the 38th International Cosmic Ray Conference (ICRC
2023), 2023 (arXiv:2309.08219
Symbolic Partial-Order Execution for Testing Multi-Threaded Programs
We describe a technique for systematic testing of multi-threaded programs. We
combine Quasi-Optimal Partial-Order Reduction, a state-of-the-art technique
that tackles path explosion due to interleaving non-determinism, with symbolic
execution to handle data non-determinism. Our technique iteratively and
exhaustively finds all executions of the program. It represents program
executions using partial orders and finds the next execution using an
underlying unfolding semantics. We avoid the exploration of redundant program
traces using cutoff events. We implemented our technique as an extension of
KLEE and evaluated it on a set of large multi-threaded C programs. Our
experiments found several previously undiscovered bugs and undefined behaviors
in memcached and GNU sort, showing that the new method is capable of finding
bugs in industrial-size benchmarks.Comment: Extended version of a paper presented at CAV'2
Measurement of the cross-section ratio sigma_{psi(2S)}/sigma_{J/psi(1S)} in deep inelastic exclusive ep scattering at HERA
The exclusive deep inelastic electroproduction of and
at an centre-of-mass energy of 317 GeV has been studied with the ZEUS
detector at HERA in the kinematic range GeV,
GeV and GeV, where is the photon virtuality, is the
photon-proton centre-of-mass energy and is the squared four-momentum
transfer at the proton vertex. The data for GeV were taken in
the HERA I running period and correspond to an integrated luminosity of 114
pb. The data for GeV are from both HERA I and HERA II
periods and correspond to an integrated luminosity of 468 pb. The decay
modes analysed were and for the
and for the . The cross-section ratio
has been measured as a function of
and . The results are compared to predictions of QCD-inspired
models of exclusive vector-meson production.Comment: 24 pages, 8 figure
Measurement of neutral current e+/-p cross sections at high Bjorken x with the ZEUS detector
The neutral current e+/-p cross section has been measured up to values of
Bjorken x of approximately 1 with the ZEUS detector at HERA using an integrated
luminosity of 187 inv. pb of e-p and 142 inv. pb of e+p collisions at sqrt(s) =
318GeV. Differential cross sections in x and Q2, the exchanged boson
virtuality, are presented for Q2 geq 725GeV2. An improved reconstruction method
and greatly increased amount of data allows a finer binning in the high-x
region of the neutral current cross section and leads to a measurement with
much improved precision compared to a similar earlier analysis. The
measurements are compared to Standard Model expectations based on a variety of
recent parton distribution functions.Comment: 39 pages, 9 figure
Evidence for proton acceleration up to TeV energies based on VERITAS and Fermi-LAT observations of the Cas A SNR
We present a study of -ray emission from the core-collapse supernova
remnant Cas~A in the energy range from 0.1GeV to 10TeV. We used 65 hours of
VERITAS data to cover 200 GeV - 10 TeV, and 10.8 years of \textit{Fermi}-LAT
data to cover 0.1-500 GeV. The spectral analysis of \textit{Fermi}-LAT data
shows a significant spectral curvature around GeV that is
consistent with the expected spectrum from pion decay. Above this energy, the
joint spectrum from \textit{Fermi}-LAT and VERITAS deviates significantly from
a simple power-law, and is best described by a power-law with spectral index of
with a cut-off energy of TeV. These
results, along with radio, X-ray and -ray data, are interpreted in the
context of leptonic and hadronic models. Assuming a one-zone model, we exclude
a purely leptonic scenario and conclude that proton acceleration up to at least
6 TeV is required to explain the observed -ray spectrum. From modeling
of the entire multi-wavelength spectrum, a minimum magnetic field inside the
remnant of is deduced.Comment: 33 pages, 9 Figures, 6 Table
Direct measurement of stellar angular diameters by the VERITAS Cherenkov Telescopes
The angular size of a star is a critical factor in determining its basic
properties. Direct measurement of stellar angular diameters is difficult: at
interstellar distances stars are generally too small to resolve by any
individual imaging telescope. This fundamental limitation can be overcome by
studying the diffraction pattern in the shadow cast when an asteroid occults a
star, but only when the photometric uncertainty is smaller than the noise added
by atmospheric scintillation. Atmospheric Cherenkov telescopes used for
particle astrophysics observations have not generally been exploited for
optical astronomy due to the modest optical quality of the mirror surface.
However, their large mirror area makes them well suited for such
high-time-resolution precision photometry measurements. Here we report two
occultations of stars observed by the VERITAS Cherenkov telescopes with
millisecond sampling, from which we are able to provide a direct measurement of
the occulted stars' angular diameter at the milliarcsecond scale.
This is a resolution never achieved before with optical measurements and
represents an order of magnitude improvement over the equivalent lunar
occultation method. We compare the resulting stellar radius with empirically
derived estimates from temperature and brightness measurements, confirming the
latter can be biased for stars with ambiguous stellar classifications.Comment: Accepted for publication in Nature Astronom
Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS
Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations
- …