827 research outputs found
Resource and cost management
Educational lecture notes contains the fundamentals of a general theory of resource and cost management, classification of costs for decision-making, methods of constructing cost functions of the enterprise, analysis of the relationship between costs, volume and profits, the methods and systems of cost calculation, principles of cost management system. Designed for students directions 073 Β«ManagementΒ» and 076 Β«Entrepreneurship, trade and exchange activityΒ»
Electron-Phonon Dynamics in an Ensemble of Nearly Isolated Nanoparticles
We investigate the electron population dynamics in an ensemble of nearly
isolated insulating nanoparticles, each nanoparticle modeled as an electronic
two-level system coupled to a single vibrational mode. We find that at short
times the ensemble-averaged excited-state population oscillates but has a
decaying envelope. At long times, the oscillations become purely sinusoidal
about a ``plateau'' population, with a frequency determined by the
electron-phonon interaction strength, and with an envelope that decays
algebraically as t^-{1/2} We use this theory to predict electron-phonon
dynamics in an ensemble of Y_2 O_3 nanoparticles.Comment: 11 pages, 3 figure
Channel spaser
We show that net amplification of surface plasmons is achieved in channel in
a metal plate due to nonradiative excitation by quantum dots. This makes
possible lossless plasmon transmission lines in the channel as well as the
amplification and generation of coherent surface plasmons. As an example, a
ring channel spaser is considered
ΠΠΎΡΡΠΎΠ»ΠΎΠ³ΠΎ-Π°Π½Π°ΡΠΎΠΌΡΡΠ½Π΅ Π²ΠΈΠ²ΡΠ΅Π½Π½Ρ Π»ΠΈΡΡΡ Rhododendron luteum sweet
Topicality. Rhododendrons are one of the most popular plants that are widely cultivated in most European countries as ornamental, essential oil, honey and insecticidal plants. Rhododendron luteum Sweet is a polymorphic species found in Ukraine as a wild-growing and ornamental plant. The chemical composition of yellow rhododendron is represented mainly by essential oils, flavonoids, hydroxycinnamic and organic acids, and triterpene and coumarin substances. Leaves are widely used in folk medicine as a diuretic, diaphoretic, astringent, wound healing, anti-inflammatory and analgesic. As a result of the study of the morphological and anatomical structure of the yellow rhododendron leaves, its structurally foliar characters under the conditions of this ecotype growth in Ukraine were studied according to a preliminary analysis of published data. Our studies were carried out with the aim of using macroscopic and microscopic traits of leaves of this species to standardize medicinal plant materials and develop quality control methods.Aim. To identify the leaves of Rhododendron luteum (L.) Sweet by macro and microscopic characteristics. Set the main diagnostic signs of leaves.Materials and methods. The objects of the study were samples of yellow rhododendron leaves collected during the mass flowering period. Microscopicstudies were performed on raw materials fixed in a mixture ofΒ alcohol-glycerolwater (1 : 1 : 1). We used an OLYMPUS Lens FE-140 camera, an MBI-6 microscope, and a Biola-M microscope.Results and discussion. The main morphological and anatomical signs of yellow rhododendron leaves were determined. Macroscopic features include simple short-leaved leaves with a leathery, hollow leaf blade, with a solid edge, a pointed tip, a wedge-shaped base, cirrus venation; microscopic is dorsoventrally type of leaf blade structure. The cells of the upper epidermis are large, thin-walled, sinuous, without stomata, covered with a thick layer of cutin; cells of the lower epidermis are slightly tortuous; stomatal apparatus of the paracitic type, typical of the abaxial epiderm, covering and glandular trichomes are present. Ferruginous club-shaped emergenes on a multicellular stand, the cells of which accumulate a yellowish-brown secretion, the secreting head is oval-cylindrical, multicellular, with dark contents. Covering hairs is of three varieties: 1-2-cell, long, curled, spiky prevail, straight-walled hairs with an expanded base and long, straight-walled, thin-walled hairs are less common. The cut is round-triangular in cross section, the angular collenchyma is underlying the epidermis; in parenchymal cells, frequent crystals of calcium oxalate - druses and prismatic crystals.Conclusions. The results of macroscopic and microscopic study characteristics of yellow rhododendron leaves will be used to standardize medicinal plant materials and develop quality control methods.ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ. Π ΠΎΠ΄ΠΎΠ΄Π΅Π½Π΄ΡΠΎΠ½Ρ ΡΠ²Π»ΡΡΡΡΡ ΠΎΠ΄Π½ΠΈΠΌΠΈ ΠΈΠ· ΠΏΠΎΠΏΡΠ»ΡΡΠ½Π΅ΠΉΡΠΈΡ
ΡΠ°ΡΡΠ΅Π½ΠΈΠΉ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠΈΡΠΎΠΊΠΎ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΡΡΡΡΡ Π² Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Π΅ ΡΡΡΠ°Π½ ΠΠ²ΡΠΎΠΏΡ ΠΊΠ°ΠΊ Π΄Π΅ΠΊΠΎΡΠ°ΡΠΈΠ²Π½ΡΠ΅, ΡΡΠΈΡΠΎΠΌΠ°ΡΠ»ΠΈΡΠ½ΡΠ΅, ΠΌΠ΅Π΄ΠΎΠ½ΠΎΡΠ½ΡΠ΅ ΠΈ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΡΠΈΠ΄Π½ΡΠ΅ ΡΠ°ΡΡΠ΅Π½ΠΈΡ. Rhododendron luteum Sweet β ΠΏΠΎΠ»ΠΈΠΌΠΎΡΡΠ½ΡΠΉ Π²ΠΈΠ΄, ΠΊΠΎΡΠΎΡΡΠΉ Π²ΡΡΡΠ΅ΡΠ°Π΅ΡΡΡ Π² Π£ΠΊΡΠ°ΠΈΠ½Π΅ ΠΊΠ°ΠΊ Π΄ΠΈΠΊΠΎΡΠ°ΡΡΡΡΠ΅Π΅ ΠΈ Π΄Π΅ΠΊΠΎΡΠ°ΡΠΈΠ²Π½ΠΎΠ΅ ΡΠ°ΡΡΠ΅Π½ΠΈΠ΅. Π₯ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΎΡΡΠ°Π² ΡΠΎΠ΄ΠΎΠ΄Π΅Π½Π΄ΡΠΎΠ½Π° ΠΆΠ΅Π»ΡΠΎΠ³ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½, ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ, ΡΡΠΈΡΠ½ΡΠΌΠΈ ΠΌΠ°ΡΠ»Π°ΠΌΠΈ, ΡΠ»Π°Π²ΠΎΠ½ΠΎΠΈΠ΄Π°ΠΌΠΈ, Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠΊΠΎΡΠΈΡΠ½ΡΠΌΠΈ ΠΈ ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΊΠΈΡΠ»ΠΎΡΠ°ΠΌΠΈ, Π²Π΅ΡΠ΅ΡΡΠ²Π°ΠΌΠΈ ΡΡΠΈΡΠ΅ΡΠΏΠ΅Π½ΠΎΠ²ΠΎΠΉ ΠΈ ΠΊΡΠΌΠ°ΡΠΈΠ½ΠΎΠ²ΠΎΠΉ ΠΏΡΠΈΡΠΎΠ΄Ρ. ΠΠΈΡΡΡΡ ΡΠΈΡΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ Π² Π½Π°ΡΠΎΠ΄Π½ΠΎΠΉ ΠΌΠ΅Π΄ΠΈΡΠΈΠ½Π΅ ΠΊΠ°ΠΊ ΠΌΠΎΡΠ΅Π³ΠΎΠ½Π½ΠΎΠ΅, ΠΏΠΎΡΠΎΠ³ΠΎΠ½Π½ΠΎΠ΅, Π²ΡΠΆΡΡΠ΅Π΅, ΡΠ°Π½ΠΎΠ·Π°ΠΆΠΈΠ²Π»ΡΡΡΠ΅Π΅, ΠΏΡΠΎΡΠΈΠ²ΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΠΈ Π±ΠΎΠ»Π΅ΡΡΠΎΠ»ΡΡΡΠ΅Π΅ ΡΡΠ΅Π΄ΡΡΠ²ΠΎ. ΠΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ½ΡΡ
Π΄Π°Π½Π½ΡΡ
ΠΏΠΎΠΊΠ°Π·Π°Π», ΡΡΠΎ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΎ-Π°Π½Π°ΡΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΡΡΠΎΠ΅Π½ΠΈΡ Π»ΠΈΡΡΡΠ΅Π² ΡΠΎΠ΄ΠΎΠ΄Π΅Π½Π΄ΡΠΎΠ½Π° ΠΆΠ΅Π»ΡΠΎΠ³ΠΎ ΠΈΠ·ΡΡΠ΅Π½Ρ Π΅Π³ΠΎ ΡΡΡΡΠΊΡΡΡΠ½ΠΎ-ΡΠΎΠ»ΠΈΠ°ΡΠ½ΡΠ΅ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΈ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΠΏΡΠΎΠΈΠ·ΡΠ°ΡΡΠ°Π½ΠΈΡ ΡΡΠΎΠ³ΠΎ ΡΠΊΠΎΡΠΈΠΏΠ° Π² Π£ΠΊΡΠ°ΠΈΠ½Π΅. ΠΠ°ΡΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈΡΡ Ρ ΡΠ΅Π»ΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠ°ΠΊΡΠΎΡΠΊΠΎΠΏΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² Π»ΠΈΡΡΡΠ΅Π² ΡΡΠΎΠ³ΠΎ Π²ΠΈΠ΄Π° Π΄Π»Ρ ΡΡΠ°Π½Π΄Π°ΡΡΠΈΠ·Π°ΡΠΈΠΈ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ°ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΡΡΡ ΠΈ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΠΊΠ°ΡΠ΅ΡΡΠ²Π°.Π¦Π΅Π»Ρ ΡΠ°Π±ΠΎΡΡ. ΠΡΠΎΠ²Π΅ΡΡΠΈ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΡ Π»ΠΈΡΡΡΠ΅Π² Rhododendron luteum (L.) Sweet ΠΏΠΎ ΠΌΠ°ΠΊΡΠΎ- ΠΈ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΏΡΠΈΠ·Π½Π°ΠΊΠ°ΠΌ. Π£ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΈ Π»ΠΈΡΡΡΠ΅Π².ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΠ±ΡΠ΅ΠΊΡΠ°ΠΌΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π±ΡΠ»ΠΈ ΠΎΠ±ΡΠ°Π·ΡΡ Π»ΠΈΡΡΡΠ΅Π² ΡΠΎΠ΄ΠΎΠ΄Π΅Π½Π΄ΡΠΎΠ½Π° ΠΆΠ΅Π»ΡΠΎΠ³ΠΎ, ΡΠΎΠ±ΡΠ°Π½Π½ΡΡ
Π² ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΌΠ°ΡΡΠΎΠ²ΠΎΠ³ΠΎ ΡΠ²Π΅ΡΠ΅Π½ΠΈΡ. ΠΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π½Π° ΡΡΡΡΠ΅, ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΌ Π² ΡΠΌΠ΅ΡΠΈ ΡΠΏΠΈΡΡ-Π³Π»ΠΈΡΠ΅ΡΠΈΠ½-Π²ΠΎΠ΄Π° (1 : 1 : 1). Π ΡΠ°Π±ΠΎΡΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ ΡΠΎΡΠΎΠ°ΠΏΠΏΠ°ΡΠ°Ρ OLYMPUS Lens FE-140, ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏ ΠΠΠ-6, ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏ ΠΠΈΠΎΠ»Π°-Π.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈ ΠΈΡ
ΠΎΠ±ΡΡΠΆΠ΄Π΅Π½ΠΈΠ΅. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΎ-Π°Π½Π°ΡΠΎΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΈ Π»ΠΈΡΡΡΠ΅Π² ΡΠΎΠ΄ΠΎΠ΄Π΅Π½Π΄ΡΠΎΠ½Π° ΠΆΠ΅Π»ΡΠΎΠ³ΠΎ. Π ΠΌΠ°ΠΊΡΠΎΡΠΊΠΎΠΏΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΏΡΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΎΡΠ½Π΅ΡΠ΅Π½Ρ ΠΏΡΠΎΡΡΡΠ΅ ΠΊΠΎΡΠΎΡΠΊΠΎΡΠ΅ΡΠ΅ΡΠΊΠΎΠ²ΡΠ΅ Π»ΠΈΡΡΡΡ Ρ ΠΊΠΎΠΆΠΈΡΡΠΎΠΉ, ΡΠ΅Π»ΠΎΡΡΠ½ΠΎΠΉ Π»ΠΈΡΡΠΎΠ²ΠΎΠΉ ΠΏΠ»Π°ΡΡΠΈΠ½ΠΊΠΎΠΉ Ρ ΡΠ΅Π»ΡΠ½ΡΠΌ ΠΊΡΠ°Π΅ΠΌ, Π·Π°ΠΎΡΡΡΠ΅Π½Π½ΠΎΠΉ Π²Π΅ΡΡ
ΡΡΠΊΠΎΠΉ, ΠΊΠ»ΠΈΠ½ΠΎΠ²ΠΈΠ΄Π½ΠΎΠΉ ΠΎΡΠ½ΠΎΠ²ΠΎΠΉ, ΠΏΠ΅ΡΠΈΡΡΡΠΌ ΠΆΠΈΠ»ΠΊΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ; ΠΊ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΡΠ΅ΡΠΊΠΈΠΌ β Π΄ΠΎΡΠ·ΠΎΠ²Π΅Π½ΡΡΠ°Π»ΡΠ½ΡΠΉ ΡΠΈΠΏ ΡΡΡΠΎΠ΅Π½ΠΈΡ Π»ΠΈΡΡΠΎΠ²ΠΎΠΉ ΠΏΠ»Π°ΡΡΠΈΠ½ΠΊΠΈ. ΠΠ»Π΅ΡΠΊΠΈ Π²Π΅ΡΡ
Π½Π΅ΠΉ ΡΠΏΠΈΠ΄Π΅ΡΠΌΡ ΠΊΡΡΠΏΠ½ΡΠ΅, ΡΠΎΠ½ΠΊΠΎΡΡΠ΅Π½Π½ΡΠ΅, ΠΈΠ·Π²ΠΈΠ»ΠΈΡΡΠΎΡΡΠ΅Π½Π½ΡΠ΅, Π±Π΅Π· ΡΡΡΡΠΈΡ, ΠΏΠΎΠΊΡΡΡΡΠ΅ ΡΠΎΠ»ΡΡΡΠΌ ΡΠ»ΠΎΠ΅ΠΌ ΠΊΡΡΠΈΠ½Π°; ΠΊΠ»Π΅ΡΠΊΠΈ Π½ΠΈΠΆΠ½Π΅ΠΉ ΡΠΏΠΈΠ΄Π΅ΡΠΌΡ ΡΠ»Π°Π±ΠΎ ΠΈΠ·Π²ΠΈΠ»ΠΈΡΡΠΎΡΡΠ΅Π½Π½ΡΠ΅; ΡΡΡΡΠΈΡΠ½ΡΠΉ Π°ΠΏΠΏΠ°ΡΠ°Ρ ΠΏΠ°ΡΠ°ΡΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠΏΠ°, ΡΠΈΠΏΠΈΡΠ½ΡΠΉ Π΄Π»Ρ Π°Π±Π°ΠΊΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΏΠΈΠ΄Π΅ΡΠΌΡ, ΠΏΡΠΈΡΡΡΡΡΠ²ΡΡΡ ΠΊΡΠΎΡΡΠΈΠ΅ ΠΈ ΠΆΠ΅Π»Π΅Π·ΠΈΡΡΡΠ΅ ΡΡΠΈΡ
ΠΎΠΌΡ. ΠΠ΅Π»Π΅Π·ΠΈΡΡΡΠ΅ Π±ΡΠ»Π°Π²ΠΎΠ²ΠΈΠ΄Π½ΡΠ΅ ΡΠΌΠ΅ΡΠ³Π΅Π½ΡΡ Π½Π° ΠΌΠ½ΠΎΠ³ΠΎΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΊΠ΅, ΠΊΠ»Π΅ΡΠΊΠΈ ΠΊΠΎΡΠΎΡΠΎΠΉ Π½Π°ΠΊΠ°ΠΏΠ»ΠΈΠ²Π°ΡΡ ΠΆΠ΅Π»ΡΠΎΠ²Π°ΡΠΎ-ΠΊΠΎΡΠΈΡΠ½Π΅Π²ΡΠΉ ΡΠ΅ΠΊΡΠ΅Ρ, ΡΠ΅ΠΊΡΠ΅ΡΠΈΡΡΡΡΠ°Ρ Π³ΠΎΠ»ΠΎΠ²ΠΊΠ° ΠΎΠ²Π°Π»ΡΠ½ΠΎ-ΡΠΈΠ»ΠΈΠ½Π΄ΡΠΈΡΠ΅ΡΠΊΠ°Ρ, ΠΌΠ½ΠΎΠ³ΠΎΠΊΠ»Π΅ΡΠΎΡΠ½Π°Ρ Ρ ΡΠ΅ΠΌΠ½ΡΠΌ ΡΠΎΠ΄Π΅ΡΠΆΠΈΠΌΡΠΌ. ΠΡΠΎΡΡΠΈΠ΅ Π²ΠΎΠ»ΠΎΡΠΊΠΈ ΡΡΠ΅Ρ
ΡΠ°Π·Π½ΠΎΠ²ΠΈΠ΄Π½ΠΎΡΡΠ΅ΠΉ: ΠΏΡΠ΅ΠΎΠ±Π»Π°Π΄Π°ΡΡ 1-2-ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΠ΅, Π΄Π»ΠΈΠ½Π½ΡΠ΅, Π·Π°Π³Π½ΡΡΡΠ΅, ΠΎΡΡΡΠΎΠΊΠΎΠ½Π΅ΡΠ½ΡΠ΅, ΡΠ΅ΠΆΠ΅ Π²ΡΡΡΠ΅ΡΠ°ΡΡΡΡ ΠΏΡΡΠΌΠΎΡΡΠ΅Π½Π½ΡΠ΅ Π²ΠΎΠ»ΠΎΡΠΊΠΈ Ρ ΡΠ°ΡΡΠΈΡΠ΅Π½Π½ΠΎΠΉ ΠΎΡΠ½ΠΎΠ²ΠΎΠΉ ΠΈ Π΄Π»ΠΈΠ½Π½ΡΠ΅, ΠΏΡΡΠΌΠΎΡΡΠ΅Π½Π½ΡΠ΅ ΠΈ ΡΠΎΠ½ΠΊΠΎΡΡΠ΅Π½Π½ΡΠ΅. Π§Π΅ΡΠ΅Π½ΠΎΠΊ ΠΎΠΊΡΡΠ³Π»ΠΎ-ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ Π½Π° ΠΏΠΎΠΏΠ΅ΡΠ΅ΡΠ½ΠΎΠΌ ΡΠ°Π·ΡΠ΅Π·Π΅, ΡΠΏΠΈΠ΄Π΅ΡΠΌΡ ΠΏΠΎΠ΄ΡΡΠΈΠ»Π°Π΅Ρ ΡΠ³Π»ΠΎΠ²Π°Ρ ΠΊΠΎΠ»Π»Π΅Π½Ρ
ΠΈΠΌΠ°; Π² ΠΏΠ°ΡΠ΅Π½Ρ
ΠΈΠΌΠ½ΡΡ
ΠΊΠ»Π΅ΡΠΊΠ°Ρ
ΡΠ°ΡΡΡΠ΅ ΠΊΡΠΈΡΡΠ°Π»Π»Ρ ΠΎΠΊΡΠ°Π»Π°ΡΠ° ΠΊΠ°Π»ΡΡΠΈΡ β Π΄ΡΡΠ·Ρ ΠΈ ΠΏΡΠΈΠ·ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΡΠΈΡΡΠ°Π»Π»Ρ.ΠΡΠ²ΠΎΠ΄Ρ. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΠΌΠ°ΠΊΡΠΎΡΠΊΠΎΠΏΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² Π»ΠΈΡΡΡΠ΅Π² ΡΠΎΠ΄ΠΎΠ΄Π΅Π½Π΄ΡΠΎΠ½Π° ΠΆΠ΅Π»ΡΠΎΠ³ΠΎ Π±ΡΠ΄ΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ Π΄Π»Ρ ΡΡΠ°Π½Π΄Π°ΡΡΠΈΠ·Π°ΡΠΈΠΈ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ°ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΡΡΡ ΠΈ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΠΊΠ°ΡΠ΅ΡΡΠ²Π°.ΠΠΊΡΡΠ°Π»ΡΠ½ΡΡΡΡ. Π ΠΎΠ΄ΠΎΠ΄Π΅Π½Π΄ΡΠΎΠ½ΠΈ Ρ ΠΎΠ΄Π½ΠΈΠΌΠΈ Π· Π½Π°ΠΉΠΏΠΎΠΏΡΠ»ΡΡΠ½ΡΡΠΈΡ
ΡΠΎΡΠ»ΠΈΠ½, ΡΠΎ ΡΠΈΡΠΎΠΊΠΎ ΠΊΡΠ»ΡΡΠΈΠ²ΡΡΡΡΡΡ Ρ Π±ΡΠ»ΡΡΠΎΡΡΡ ΠΊΡΠ°ΡΠ½ ΠΠ²ΡΠΎΠΏΠΈ ΡΠΊ Π΄Π΅ΠΊΠΎΡΠ°ΡΠΈΠ²Π½Ρ, Π΅ΡΡΡΠΎΠΎΠ»ΡΠΉΠ½Ρ, ΠΌΠ΅Π΄ΠΎΠ½ΠΎΡΠ½Ρ ΡΠ° ΡΠ½ΡΠ΅ΠΊΡΠΈΡΠΈΠ΄Π½Ρ ΡΠΎΡΠ»ΠΈΠ½ΠΈ. Rhododendron luteum Sweet β ΠΏΠΎΠ»ΡΠΌΠΎΡΡΠ½ΠΈΠΉ Π²ΠΈΠ΄, ΡΠΊΠΈΠΉ Π·ΡΡΡΡΡΡΠ°ΡΡΡΡΡ Π² Π£ΠΊΡΠ°ΡΠ½Ρ ΡΠΊ Π΄ΠΈΠΊΠΎΡΠΎΡΠ»Π° ΡΠ° Π΄Π΅ΠΊΠΎΡΠ°ΡΠΈΠ²Π½Π° ΡΠΎΡΠ»ΠΈΠ½Π°. Π₯ΡΠΌΡΡΠ½ΠΈΠΉ ΡΠΊΠ»Π°Π΄ ΡΠΎΠ΄ΠΎΠ΄Π΅Π½Π΄ΡΠΎΠ½Ρ ΠΆΠΎΠ²ΡΠΎΠ³ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠΉ ΠΏΠ΅ΡΠ΅Π²Π°ΠΆΠ½ΠΎ Π΅ΡΡΡΠ½ΠΈΠΌΠΈ ΠΎΠ»ΡΡΠΌΠΈ, ΡΠ»Π°Π²ΠΎΠ½ΠΎΡΠ΄Π°ΠΌΠΈ, Π³ΡΠ΄ΡΠΎΠΊΡΠΈΠΊΠΎΡΠΈΡΠ½ΠΈΠΌΠΈ ΡΠ° ΠΎΡΠ³Π°Π½ΡΡΠ½ΠΈΠΌΠΈ ΠΊΠΈΡΠ»ΠΎΡΠ°ΠΌΠΈ, ΡΠ΅ΡΠΎΠ²ΠΈΠ½Π°ΠΌΠΈ ΡΡΠΈΡΠ΅ΡΠΏΠ΅Π½ΠΎΠ²ΠΎΡ ΡΠ° ΠΊΡΠΌΠ°ΡΠΈΠ½ΠΎΠ²ΠΎΡ ΠΏΡΠΈΡΠΎΠ΄ΠΈ. ΠΠΈΡΡΠΊΠΈ ΡΠΈΡΠΎΠΊΠΎ Π²ΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΡΡΡ Ρ Π½Π°ΡΠΎΠ΄Π½ΡΠΉ ΠΌΠ΅Π΄ΠΈΡΠΈΠ½Ρ ΡΠΊ ΡΠ΅ΡΠΎΠ³ΡΠ½Π½ΠΈΠΉ, ΠΏΠΎΡΠΎΠ³ΡΠ½Π½ΠΈΠΉ, Π²`ΡΠΆΡΡΠΈΠΉ, ΡΠ°Π½ΠΎΠ·Π°Π³ΠΎΡΠ²Π°Π»ΡΠ½ΠΈΠΉ, ΠΏΡΠΎΡΠΈΠ·Π°ΠΏΠ°Π»ΡΠ½ΠΈΠΉ ΡΠ° Π±ΠΎΠ»Π΅ΡΠ°ΠΌΡΠ²Π°Π»ΡΠ½ΠΈΠΉ Π·Π°ΡΡΠ±. ΠΠΎΠΏΠ΅ΡΠ΅Π΄Π½ΡΠΉ Π°Π½Π°Π»ΡΠ· Π»ΡΡΠ΅ΡΠ°ΡΡΡΠ½ΠΈΡ
Π΄Π°Π½ΠΈΡ
ΠΏΠΎΠΊΠ°Π·Π°Π², ΡΠΎ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π²ΠΈΠ²ΡΠ΅Π½Π½Ρ ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΎ-Π°Π½Π°ΡΠΎΠΌΡΡΠ½ΠΎΡ Π±ΡΠ΄ΠΎΠ²ΠΈ Π»ΠΈΡΡΠΊΡΠ² ΡΠΎΠ΄ΠΎΠ΄Π΅Π½Π΄ΡΠΎΠ½Ρ ΠΆΠΎΠ²ΡΠΎΠ³ΠΎ Π²ΠΈΡΠ²Π»Π΅Π½Ρ ΠΉΠΎΠ³ΠΎ ΡΡΡΡΠΊΡΡΡΠ½ΠΎ-ΡΠΎΠ»ΡΠ°ΡΠ½Ρ ΠΎΠ·Π½Π°ΠΊΠΈ ΡΠΎΠ΄ΠΎ ΡΠΌΠΎΠ² Π·ΡΠΎΡΡΠ°Π½Π½Ρ ΡΡΠΎΠ³ΠΎ Π΅ΠΊΠΎΡΠΈΠΏΡ Π² Π£ΠΊΡΠ°ΡΠ½Ρ. ΠΠ°ΡΡ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈΡΡ Π· ΠΌΠ΅ΡΠΎΡ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ ΠΌΠ°ΠΊΡΠΎΡΠΊΠΎΠΏΡΡΠ½ΠΈΡ
ΡΠ° ΠΌΡΠΊΡΠΎΡΠΊΠΎΠΏΡΡΠ½ΠΈΡ
ΠΎΠ·Π½Π°ΠΊ Π»ΠΈΡΡΠΊΡΠ² ΡΡΠΎΠ³ΠΎ Π²ΠΈΠ΄Ρ Π΄Π»Ρ ΡΡΠ°Π½Π΄Π°ΡΡΠΈΠ·Π°ΡΡΡ Π»ΡΠΊΠ°ΡΡΡΠΊΠΎΡ ΡΠΎΡΠ»ΠΈΠ½Π½ΠΎΡ ΡΠΈΡΠΎΠ²ΠΈΠ½ΠΈ ΡΠ° ΡΠΎΠ·ΡΠΎΠ±ΠΊΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΡΠΊΠΎΡΡΡ.ΠΠ΅ΡΠ° ΡΠΎΠ±ΠΎΡΠΈ. ΠΡΠΎΠ²Π΅ΡΡΠΈ ΡΠ΄Π΅Π½ΡΠΈΡΡΠΊΠ°ΡΡΡ Π»ΠΈΡΡΠΊΡΠ² Rhododendron luteum (L.) Sweet Π·Π° ΠΌΠ°ΠΊΡΠΎ- ΡΠ° ΠΌΡΠΊΡΠΎΡΠΊΠΎΠΏΡΡΠ½ΠΈΠΌΠΈ ΠΎΠ·Π½Π°ΠΊΠ°ΠΌΠΈ. ΠΡΡΠ°Π½ΠΎΠ²ΠΈΡΠΈ ΠΎΡΠ½ΠΎΠ²Π½Ρ Π΄ΡΠ°Π³Π½ΠΎΡΡΠΈΡΠ½Ρ ΠΎΠ·Π½Π°ΠΊΠΈ Π»ΠΈΡΡΡ.ΠΠ°ΡΠ΅ΡΡΠ°Π»ΠΈ ΡΠ° ΠΌΠ΅ΡΠΎΠ΄ΠΈ. ΠΠ±βΡΠΊΡΠ°ΠΌΠΈ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ Π±ΡΠ»ΠΈ Π·ΡΠ°Π·ΠΊΠΈ Π»ΠΈΡΡΠΊΡΠ² ΡΠΎΠ΄ΠΎΠ΄Π΅Π½Π΄ΡΠΎΠ½Ρ ΠΆΠΎΠ²ΡΠΎΠ³ΠΎ, Π·ΡΠ±ΡΠ°Π½ΠΈΡ
Ρ ΠΏΠ΅ΡΡΠΎΠ΄ ΠΌΠ°ΡΠΎΠ²ΠΎΠ³ΠΎ ΡΠ²ΡΡΡΠ½Π½Ρ. ΠΡΠΊΡΠΎΡΠΊΠΎΠΏΡΡΠ½Ρ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π½Π° ΡΠΈΡΠΎΠ²ΠΈΠ½Ρ, ΡΡΠΊΡΠΎΠ²Π°Π½ΡΠΉ Ρ ΡΡΠΌΡΡΡ ΡΠΏΠΈΡΡ-Π³Π»ΡΡΠ΅ΡΠΈΠ½-Π²ΠΎΠ΄Π° (1 : 1 : 1). Π£ ΡΠΎΠ±ΠΎΡΡ Π²ΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΠ²Π°Π»ΠΈ ΡΠΎΡΠΎΠ°ΠΏΠ°ΡΠ°Ρ OLYMPUS Lens FE-140, ΠΌΡΠΊΡΠΎΡΠΊΠΎΠΏ ΠΠΠ-6, ΠΌΡΠΊΡΠΎΡΠΊΠΎΠΏ ΠΠΠΠΠΠ-Π.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΠΈ ΡΠ° ΡΡ
ΠΎΠ±Π³ΠΎΠ²ΠΎΡΠ΅Π½Π½Ρ. ΠΠΈΠ·Π½Π°ΡΠ΅Π½Ρ ΠΎΡΠ½ΠΎΠ²Π½Ρ ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΎ-Π°Π½Π°ΡΠΎΠΌΡΡΠ½Ρ ΠΎΠ·Π½Π°ΠΊΠΈ Π»ΠΈΡΡΠΊΡΠ² ΡΠΎΠ΄ΠΎΠ΄Π΅Π½Π΄ΡΠΎΠ½Ρ ΠΆΠΎΠ²ΡΠΎΠ³ΠΎ. ΠΠΎ ΠΌΠ°ΠΊΡΠΎΡΠΊΠΎΠΏΡΡΠ½ΠΈΡ
ΠΎΠ·Π½Π°ΠΊ Π²ΡΠ΄Π½Π΅ΡΠ΅Π½ΠΎ β ΠΏΡΠΎΡΡΡ ΠΊΠΎΡΠΎΡΠΊΠΎΡΠ΅ΡΠ΅ΡΠΊΠΎΠ²Ρ Π»ΠΈΡΡΠΊΠΈ Π· ΡΠΊΡΡΡΡΡΠΎΡ, ΡΡΠ»ΡΡΠ½ΠΎΡ Π»ΠΈΡΡΠΊΠΎΠ²ΠΎΡ ΠΏΠ»Π°ΡΡΠΈΠ½ΠΊΠΎΡ Π· ΡΡΠ»ΡΡΠ½ΠΈΠΌ ΠΊΡΠ°ΡΠΌ, Π·Π°Π³ΠΎΡΡΡΠ΅Π½ΠΎΡ Π²Π΅ΡΡ
ΡΠ²ΠΊΠΎΡ, ΠΊΠ»ΠΈΠ½ΠΎΠΏΠΎΠ΄ΡΠ±Π½ΠΎΡ ΠΎΡΠ½ΠΎΠ²ΠΎΡ, ΠΏΠ΅ΡΠΈΡΡΠΈΠΌ ΠΆΠΈΠ»ΠΊΡΠ²Π°Π½Π½ΡΠΌ; Π΄ΠΎ ΠΌΡΠΊΡΠΎΡΠΊΠΎΠΏΡΡΠ½ΠΈΡ
β Π΄ΠΎΡΠ·ΠΎΠ²Π΅Π½ΡΡΠ°Π»ΡΠ½ΠΈΠΉ ΡΠΈΠΏ Π±ΡΠ΄ΠΎΠ²ΠΈ Π»ΠΈΡΡΠΊΠΎΠ²ΠΎΡ ΠΏΠ»Π°ΡΡΠΈΠ½ΠΊΠΈ; ΠΊΠ»ΡΡΠΈΠ½ΠΈ Π²Π΅ΡΡ
Π½ΡΠΎΡ Π΅ΠΏΡΠ΄Π΅ΡΠΌΠΈ Π²Π΅Π»ΠΈΠΊΠΎΠΊΠ»ΡΡΠΈΠ½Π½Ρ, ΡΠΎΠ½ΠΊΠΎΡΡΡΠ½Π½Ρ, Π·Π²ΠΈΠ²ΠΈΡΡΠΎΡΡΡΠ½Π½Ρ Π±Π΅Π· ΠΏΡΠΎΠ΄ΠΈΡ
ΡΠ², Π²ΠΊΡΠΈΡΡ ΡΠΎΠ²ΡΡΠΈΠΌ ΡΠ°ΡΠΎΠΌ ΠΊΡΡΠΈΠ½Ρ; ΠΊΠ»ΡΡΠΈΠ½ΠΈ Π½ΠΈΠΆΠ½ΡΠΎΡ Π΅ΠΏΡΠ΄Π΅ΡΠΌΠΈ ΡΠ»Π°Π±ΠΊΠΎ Π·Π²ΠΈΠ²ΠΈΡΡΠΎΡΡΡΠ½Π½Ρ; ΠΏΡΠΎΠ΄ΠΈΡ
ΠΎΠ²ΠΈΠΉ Π°ΠΏΠ°ΡΠ°Ρ ΠΏΠ°ΡΠ°ΡΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠΏΡ, ΡΠΈΠΏΠΎΠ²ΠΈΠΉ Π΄Π»Ρ Π°Π±Π°ΠΊΡΡΠ°Π»ΡΠ½ΠΎΡ Π΅ΠΏΡΠ΄Π΅ΡΠΌΠΈ, Π½Π°ΡΠ²Π½Ρ ΠΊΡΠΈΡΡΡ ΡΠ° Π·Π°Π»ΠΎΠ·ΠΈΡΡΡ ΡΡΠΈΡ
ΠΎΠΌΠΈ. ΠΠ°Π»ΠΎΠ·ΠΈΡΡΡ Π±ΡΠ»Π°Π²ΠΎΠΏΠΎΠ΄ΡΠ±Π½Ρ Π΅ΠΌΠ΅ΡΠ³Π΅Π½ΡΡ Π½Π° Π±Π°Π³Π°ΡΠΎΠΊΠ»ΡΡΠΈΠ½Π½ΡΠΉ ΠΏΡΠ΄ΡΡΠ°Π²ΡΡ, ΠΊΠ»ΡΡΠΈΠ½ΠΈ ΡΠΊΠΎΡ Π½Π°ΠΊΠΎΠΏΠΈΡΡΡΡΡ ΠΆΠΎΠ²ΡΡΠ²Π°ΡΠΎ-Π±ΡΡΠ½Π°ΡΠ½ΠΈΠΉ ΡΠ΅ΠΊΡΠ΅Ρ, ΡΠ΅ΠΊΡΠ΅ΡΡΡΡΠ° Π³ΠΎΠ»ΠΎΠ²ΠΊΠ° ΠΎΠ²Π°Π»ΡΠ½ΠΎ-ΡΠΈΠ»ΡΠ½Π΄ΡΠΈΡΠ½Π°, Π±Π°Π³Π°ΡΠΎΠΊΠ»ΡΡΠΈΠ½Π½Π° Π· ΡΠ΅ΠΌΠ½ΠΈΠΌ Π²ΠΌΡΡΡΠΎΠΌ. ΠΡΠΈΡΡΡ Π²ΠΎΠ»ΠΎΡΠΊΠΈ ΡΡΡΠΎΡ
ΡΡΠ·Π½ΠΎΠ²ΠΈΠ΄ΡΠ²: ΠΏΠ΅ΡΠ΅Π²Π°ΠΆΠ°ΡΡΡ 1-2-ΠΊΠ»ΡΡΠΈΠ½Π½Ρ, Π΄ΠΎΠ²Π³Ρ, Π·Π°Π³Π½ΡΡΡ, Π³ΠΎΡΡΡΠΎΠΊΡΠ½ΡΠ΅Π²Ρ, ΡΡΠ΄ΡΠ΅ Π·ΡΡΡΡΡΡΠ°ΡΡΡΡΡ ΠΏΡΡΠΌΠΎΡΡΡΠ½Π½Ρ Π²ΠΎΠ»ΠΎΡΠΊΠΈ Π· ΡΠΎΠ·ΡΠΈΡΠ΅Π½ΠΎΡ ΠΎΡΠ½ΠΎΠ²ΠΎΡ ΡΠ° Π΄ΠΎΠ²Π³Ρ, ΠΏΡΡΠΌΠΎΡΡΡΠ½Π½Ρ Ρ ΡΠΎΠ½ΠΊΠΎΡΡΡΠ½Π½Ρ. Π§Π΅ΡΠ΅ΡΠΎΠΊ ΠΎΠΊΡΡΠ³Π»ΠΎ-ΡΡΠΈΠΊΡΡΠ½ΠΈΠΉ Π½Π° ΠΏΠΎΠΏΠ΅ΡΠ΅ΡΠ½ΠΎΠΌΡ ΡΠΎΠ·ΡΡΠ·Ρ, Π΅ΠΏΡΠ΄Π΅ΡΠΌΡ ΠΏΡΠ΄ΡΡΠ΅Π»ΡΡ ΠΊΡΡΠΎΠ²Π° ΠΊΠΎΠ»Π΅Π½Ρ
ΡΠΌΠ°; Π² ΠΏΠ°ΡΠ΅Π½Ρ
ΡΠΌΠ½ΠΈΡ
ΠΊΠ»ΡΡΠΈΠ½Π°Ρ
ΡΠ°ΡΡΡ ΠΊΡΠΈΡΡΠ°Π»ΠΈ ΠΎΠΊΡΠ°Π»Π°ΡΡ ΠΊΠ°Π»ΡΡΡΡ β Π΄ΡΡΠ·ΠΈ ΡΠ° ΠΏΡΠΈΠ·ΠΌΠ°ΡΠΈΡΠ½Ρ ΠΊΡΠΈΡΡΠ°Π»ΠΈ.ΠΠΈΡΠ½ΠΎΠ²ΠΊΠΈ. ΠΡΡΠΈΠΌΠ°Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΈ Π²ΠΈΠ²ΡΠ΅Π½Π½Ρ ΠΌΠ°ΠΊΡΠΎΡΠΊΠΎΠΏΡΡΠ½ΠΈΡ
ΡΠ° ΠΌΡΠΊΡΠΎΡΠΊΠΎΠΏΡΡΠ½ΠΈΡ
ΠΎΠ·Π½Π°ΠΊ Π»ΠΈΡΡΠΊΡΠ² ΡΠΎΠ΄ΠΎΠ΄Π΅Π½Π΄ΡΠΎΠ½Ρ ΠΆΠΎΠ²ΡΠΎΠ³ΠΎ Π±ΡΠ΄ΡΡΡ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Ρ Π΄Π»Ρ ΡΡΠ°Π½Π΄Π°ΡΡΠΈΠ·Π°ΡΡΡ Π»ΡΠΊΠ°ΡΡΡΠΊΠΎΡ ΡΠΎΡΠ»ΠΈΠ½Π½ΠΎΡ ΡΠΈΡΠΎΠ²ΠΈΠ½ΠΈ ΡΠ° ΡΠΎΠ·ΡΠΎΠ±ΠΊΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΡΠΊΠΎΡΡΡ
Anisotropic Emission from Multilayered Plasmon Resonator Nanocomposites of Isotropic Semiconductor Quantum Dots
Cataloged from PDF version of article.We propose and demonstrate a nanocomposite localized surface plasmon resonator
embedded into an artificial three-dimensional construction. Colloidal semiconductor quantum dots
are assembled between layers of metal nanoparticles to create a highly strong plasmon-exciton
interaction in the plasmonic cavity. In such a multilayered plasmonic resonator architecture of
isotropic CdTe quantum dots, we observed polarized light emission of 80% in the vertical
polarization with an enhancement factor of 4.4, resulting in a steady-state anisotropy value of
0.26 and reaching the highest quantum efficiency level of 30% ever reported for such CdTe quantum
dot solids. Our electromagnetic simulation results are in good agreement with the experimental
characterization data showing a significant emission enhancement in the vertical polarization, for
which their fluorescence decay lifetimes are substantially shortened by consecutive replication of our
unit cell architecture design. Such strongly plasmon-exciton coupling nanocomposites hold great
promise for future exploitation and development of quantum dot plasmonic biophotonics and
quantum dot plasmonic optoelectronics
ΠΡΠ±Π΅Ρ-ΡΡΠ·ΠΈΡΠ½Π° ΡΠΈΡΡΠ΅ΠΌΠ° ΠΏΡΠ΄Π²ΠΈΡΠ΅Π½Π½Ρ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΡΠΎΡΠ΅ΡΡ ΠΎΡΠΈΡΠ΅Π½Π½Ρ Π·Π°Π»ΡΠ·Π½ΠΎΡ ΡΡΠ΄ΠΈ
It is proposed to carry out the spatial effect of high-energy ultrasound dynamic effects with controlled characteristics on the solid phase particles of the ore pulp in the deslimer input product to increase the efficiency of thickening and desliming processes of iron ore beneficiation products. The above allows predicting the characteristics of particle
gravitational sedimentation based on an assessment of the spatial dynamics of pulp solid-phase particles under the controlled action of high-energy ultrasound and fuzzy logical
inference. The object of study is the assessment of the characteristics and the process of control the operations of thickening and deslaming of iron ore beneficiation products in the conditions of the technological line of the ore beneficiation plant. The subject of study is a cyber-physical system based on the use of high-energy ultrasound radiation pressure effects on iron-containing beneficiation products in the technological processes of thickening and desliming. The working hypothesis of the project is that there is a relationship between the physical-mechanical and chemical-mineralogical characteristics of the iron ore pulp solid-
phase particles and their behavior in technological flows under the influence of controlled ultrasonic radiation, based on which the imitation modeling of the gravitational sedimentation process of the iron ore pulp solid-phase particles can be performed directly in the technological process. Also, the optimal control actions concerning the processes of thickening and desliming can be determined.ΠΡΠΎΠΏΠΎΠ½ΡΡΡΡΡΡ Π·Π΄ΡΠΉΡΠ½ΠΈΡΠΈ ΠΏΡΠΎΡΡΠΎΡΠΎΠ²ΠΈΠΉ Π²ΠΏΠ»ΠΈΠ² Π²ΠΈΡΠΎΠΊΠΎΠ΅Π½Π΅ΡΠ³Π΅ΡΠΈΡΠ½ΠΈΡ
ΡΠ»ΡΡΡΠ°Π·Π²ΡΠΊΠΎΠ²ΠΈΡ
Π΄ΠΈΠ½Π°ΠΌΡΡΠ½ΠΈΡ
Π΅ΡΠ΅ΠΊΡΡΠ² Π· ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠΎΠ²Π°Π½ΠΈΠΌΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ°ΠΌΠΈ Π½Π° ΡΠ²Π΅ΡΠ΄ΠΎΡΠ°Π·Π½Ρ ΡΠ°ΡΡΠΈΠ½ΠΊΠΈ ΡΡΠ΄Π½ΠΎΡ ΠΌΠ°ΡΠΈ Π² Π²Ρ
ΡΠ΄Π½ΠΎΠΌΡ ΠΏΡΠΎΠ΄ΡΠΊΡΡ Π΄Π»Ρ ΡΠΎΠ·ΡΡΠ΄ΠΆΠ΅Π½Π½Ρ Π΄Π»Ρ ΠΏΡΠ΄Π²ΠΈΡΠ΅Π½Π½Ρ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠ² Π·Π³ΡΡΠ΅Π½Π½Ρ ΡΠ° Π·Π½Π΅ΠΆΠΈΡΠ΅Π½Π½Ρ ΠΏΡΠΎΠ΄ΡΠΊΡΡΠ² Π·Π±Π°Π³Π°ΡΠ΅Π½Π½Ρ Π·Π°Π»ΡΠ·Π½ΠΎΡ ΡΡΠ΄ΠΈ. ΠΠΈΡΠ΅ΡΠΊΠ°Π·Π°Π½Π΅ Π΄ΠΎΠ·Π²ΠΎΠ»ΡΡ ΠΏΠ΅ΡΠ΅Π΄Π±Π°ΡΠΈΡΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ Π³ΡΠ°Π²ΡΡΠ°ΡΡΠΉΠ½ΠΎΠ³ΠΎ ΠΎΡΠ°Π΄ΠΆΠ΅Π½Π½Ρ ΡΠ°ΡΡΠΈΠ½ΠΎΠΊ Π½Π° ΠΎΡΠ½ΠΎΠ²Ρ ΠΎΡΡΠ½ΠΊΠΈ ΠΏΡΠΎΡΡΠΎΡΠΎΠ²ΠΎΡ Π΄ΠΈΠ½Π°ΠΌΡΠΊΠΈ ΡΠ²Π΅ΡΠ΄ΠΎΡΠ°Π·Π½ΠΈΡ
ΡΠ°ΡΡΠΈΠ½ΠΎΠΊ ΠΏΡΠ»ΡΠΏΠΈ ΠΏΡΠ΄ ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠΎΠ²Π°Π½ΠΎΡ Π΄ΡΡΡ ΡΠ»ΡΡΡΠ°Π·Π²ΡΠΊΡ Π²ΠΈΡΠΎΠΊΠΎΡ Π΅Π½Π΅ΡΠ³ΡΡ ΡΠ° Π½Π΅ΡΡΡΠΊΠΎΠ³ΠΎ Π»ΠΎΠ³ΡΡΠ½ΠΎΠ³ΠΎ Π²ΠΈΡΠ½ΠΎΠ²ΠΊΡ. ΠΠ±'ΡΠΊΡΠΎΠΌ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ Ρ ΠΎΡΡΠ½ΠΊΠ° Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΡΠ° ΠΏΡΠΎΡΠ΅Ρ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΠΎΠΏΠ΅ΡΠ°ΡΡΠΉ Π·Π³ΡΡΠ΅Π½Π½Ρ ΡΠ° Π·Π½Π΅ΡΠΊΠΎΠ΄ΠΆΠ΅Π½Π½Ρ ΠΏΡΠΎΠ΄ΡΠΊΡΡΠ² Π·Π±Π°Π³Π°ΡΠ΅Π½Π½Ρ Π·Π°Π»ΡΠ·Π½ΠΎΡ ΡΡΠ΄ΠΈ Π² ΡΠΌΠΎΠ²Π°Ρ
ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎΡ Π»ΡΠ½ΡΡ Π·Π°Π²ΠΎΠ΄Ρ Π·Π±Π°Π³Π°ΡΠ΅Π½Π½Ρ ΡΡΠ΄ΠΈ. ΠΡΠ΅Π΄ΠΌΠ΅ΡΠΎΠΌ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ Ρ ΠΊΡΠ±Π΅ΡΡΡΠ·ΠΈΡΠ½Π° ΡΠΈΡΡΠ΅ΠΌΠ°, Π·Π°ΡΠ½ΠΎΠ²Π°Π½Π° Π½Π° Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ Π²ΠΈΡΠΎΠΊΠΎΠ΅Π½Π΅ΡΠ³Π΅ΡΠΈΡΠ½ΠΎΠ³ΠΎ Π²ΠΏΠ»ΠΈΠ²Ρ ΡΠ»ΡΡΡΠ°Π·Π²ΡΠΊΠΎΠ²ΠΎΠ³ΠΎ Π²ΠΈΠΏΡΠΎΠΌΡΠ½ΡΠ²Π°Π½Π½Ρ Π½Π° ΠΏΡΠΎΠ΄ΡΠΊΡΠΈ, ΡΠΎ ΠΌΡΡΡΡΡΡ Π·Π°Π»ΡΠ·ΠΎ, Ρ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΈΡ
ΠΏΡΠΎΡΠ΅ΡΠ°Ρ
Π·Π³ΡΡΠ΅Π½Π½Ρ ΡΠ° Π·Π½Π΅ΠΆΠΈΡΠ΅Π½Π½Ρ. Π ΠΎΠ±ΠΎΡΠ° Π³ΡΠΏΠΎΡΠ΅Π·Π° ΠΏΡΠΎΠ΅ΠΊΡΡ ΠΏΠΎΠ»ΡΠ³Π°Ρ Π² ΡΠΎΠΌΡ, ΡΠΎ ΡΡΠ½ΡΡ Π²Π·Π°ΡΠΌΠΎΠ·Π²'ΡΠ·ΠΎΠΊ ΠΌΡΠΆ ΡΡΠ·ΠΈΠΊΠΎ-ΠΌΠ΅Ρ
Π°Π½ΡΡΠ½ΠΈΠΌΠΈ ΡΠ° Ρ
ΡΠΌΡΠΊΠΎ-ΠΌΡΠ½Π΅ΡΠ°Π»ΠΎΠ³ΡΡΠ½ΠΈΠΌΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ°ΠΌΠΈ ΡΠ²Π΅ΡΠ΄ΠΎΡΠ°Π·Π½ΠΈΡ
ΡΠ°ΡΡΠΎΠΊ Π·Π°Π»ΡΠ·Π½ΠΎΡ ΡΡΠ΄ΠΈ ΡΠ° ΡΡ
ΠΏΠΎΠ²Π΅Π΄ΡΠ½ΠΊΠΎΡ Ρ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΈΡ
ΠΏΠΎΡΠΎΠΊΠ°Ρ
ΠΏΡΠ΄ Π²ΠΏΠ»ΠΈΠ²ΠΎΠΌ ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠΎΠ²Π°Π½ΠΎΠ³ΠΎ ΡΠ»ΡΡΡΠ°Π·Π²ΡΠΊΠΎΠ²ΠΎΠ³ΠΎ Π²ΠΈΠΏΡΠΎΠΌΡΠ½ΡΠ²Π°Π½Π½Ρ, Π½Π° ΠΎΡΠ½ΠΎΠ²Ρ ΡΠΎΠ³ΠΎ ΡΠΌΡΡΠ°ΡΡΡ ΠΌΠΎΠ΄Π΅Π»ΡΠ²Π°Π½Π½Ρ ΠΏΡΠΎΡΠ΅ΡΡ Π³ΡΠ°Π²ΡΡΠ°ΡΡΠΉΠ½ΠΎΠ³ΠΎ ΠΎΡΠ°Π΄ΠΆΠ΅Π½Π½Ρ ΡΠ²Π΅ΡΠ΄ΠΎΡΠ°Π·Π½ΠΈΡ
ΡΠ°ΡΡΠΈΠ½ΠΎΠΊ ΡΠ΅Π»ΡΠ»ΠΎΠ·ΠΈ Π·Π°Π»ΡΠ·Π½ΠΎΡ ΡΡΠ΄ΠΈ ΠΌΠΎΠΆΠ½Π° ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΠΈ Π±Π΅Π·ΠΏΠΎΡΠ΅ΡΠ΅Π΄Π½ΡΠΎ Π² ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎΠΌΡ ΠΏΡΠΎΡΠ΅ΡΡ. Π’Π°ΠΊΠΎΠΆ ΠΌΠΎΠΆΠ½Π° Π²ΠΈΠ·Π½Π°ΡΠΈΡΠΈ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½Ρ ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½Ρ Π΄ΡΡ ΡΠΎΠ΄ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ² ΠΏΠΎΡΠΎΠ²ΡΠ΅Π½Π½Ρ ΡΠ° Π·Π½Π΅ΠΆΠΈΡΠ΅Π½Π½Ρ
New Mechanism for Electronic Energy Relaxation in Nanocrystals
The low-frequency vibrational spectrum of an isolated nanometer-scale solid
differs dramatically from that of a bulk crystal, causing the decay of a
localized electronic state by phonon emission to be inhibited. We show,
however, that an electron can also interact with the rigid translational motion
of a nanocrystal. The form of the coupling is dictated by the equivalence
principle and is independent of the ordinary electron-phonon interaction. We
calculate the rate of nonradiative energy relaxation provided by this mechanism
and establish its experimental observability.Comment: 4 pages, Submitted to Physical Review
BAIKAL experiment: status report
We review the present status of the Baikal Neutrino Project and present the
results obtained with the deep underwater neutrino telescope NT-200.Comment: 4 pages, 3 figures. Presented at TAUP 2001 (7th international
workshop on Topics in Astroparticle and Underground Physics), Sep. 2001,
Laboratori Nazionali del Gran Sasso, Assergi, Ital
- β¦