18 research outputs found

    Chapter 11 - Agriculture, forestry and other land use (AFOLU)

    Get PDF
    Agriculture, Forestry, and Other Land Use (AFOLU) plays a central role for food security and sustainable development. Plants take up carbon dioxide (CO2) from the atmosphere and nitrogen (N) from the soil when they grow, re-distributing it among different pools, including above and below-ground living biomass, dead residues, and soil organic matter. The CO2 and other non-CO2 greenhouse gases (GHG), largely methane (CH4) and nitrous oxide (N2O), are in turn released to the atmosphere by plant respiration, by decomposition of dead plant biomass and soil organic matter, and by combustion. Anthropogenic land-use activities (e.g., management of croplands, forests, grasslands, wetlands), and changes in land use / cover (e.g., conversion of forest lands and grasslands to cropland and pasture, afforestation) cause changes superimposed on these natural fluxes. AFOLU activities lead to both sources of CO2 (e.g., deforestation, peatland drainage) and sinks of CO2 (e.g., afforestation, management for soil carbon sequestration), and to non-CO2 emissions primarily from agriculture (e.g., CH4 from livestock and rice cultivation, N2O from manure storage and agricultural soils and biomass burning. The main mitigation options within AFOLU involve one or more of three strategies: reduction / prevention of emissions to the atmosphere by conserving existing carbon pools in soils or vegetation that would otherwise be lost or by reducing emissions of CH4 and N2O; sequestration - enhancing the uptake of carbon in terrestrial reservoirs, and thereby removing CO2 from the atmosphere; and reducing CO2 emissions by substitution of biological products for fossil fuels or energy-intensive products. Demand-side options (e.g., by lifestyle changes, reducing losses and wastes of food, changes in human diet, changes in wood consumption), though known to be difficult to implement, may also play a role. Land is the critical resource for the AFOLU sector and it provides food and fodder to feed the Earth's population of ~7 billion, and fibre and fuel for a variety of purposes. It provides livelihoods for billions of people worldwide. It is finite and provides a multitude of goods and ecosystem services that are fundamental to human well-being. Human economies and quality of life are directly dependent on the services and the resources provided by land. Figure 11.1 shows the many provisioning, regulating, cultural and supporting services provided by land, of which climate regulation is just one. Implementing mitigation options in the AFOLU sector may potentially affect other services provided by land in positive or negative ways. In the Intergovernmental Panel on Climate Change (IPCC) Second Assessment Report (SAR) and in the IPCC Fourth Assessment Report (AR4), agricultural and forestry mitigation were dealt with in separate chapters. In the IPCC Third Assessment Report (TAR), there were no separate sectoral chapters on either agriculture or forestry. In the IPCC Fifth Assessment Report (AR5), for the first time, the vast majority of the terrestrial land surface, comprising agriculture, forestry and other land use (AFOLU), is considered together in a single chapter, though settlements (which are important, with urban areas forecasted to triple in size from 2000 global extent by 2030), are dealt with in Chapter 12. This approach ensures that all land-based mitigation options can be considered together; it minimizes the risk of double counting or inconsistent treatment (e.g., different assumptions about available land) between different land categories, and allows the consideration of systemic feedbacks between mitigation options related to the land surface. Considering AFOLU in a single chapter allows phenomena common across land-use types, such as competition for land and water, co-benefits, adverse side-effects and interactions between mitigation and adaptation to be considered consistently. The complex nature of land presents a unique range of barriers and opportunities, and policies to promote mitigation in the AFOLU sector need to take account of this complexity. In this chapter, we consider the competing uses of land for mitigation and for providing other services. Unlike the chapters on agriculture and forestry in AR4, impacts of sourcing bioenergy from the AFOLU sector are considered explicitly in a dedicated appendix. Also new to this assessment is the explicit consideration of food / dietary demand-side options for GHG mitigation in the AFOLU sector, and some consideration of freshwater fisheries and aquaculture, which may compete with the agriculture and forestry sectors, mainly through their requirements for land and / or water, and indirectly, by providing fish and other products to the same markets as animal husbandry. This chapter deals with AFOLU in an integrated way with respect to the underlying scenario projections of population growth, economic growth, dietary change, land-use change (LUC), and cost of mitigation. We draw evidence from both "bottom-up" studies that estimate mitigation potentials at small scales or for individual options or technologies and then scale up, and multi-sectoral "top-down" studies that consider AFOLU as just one component of a total multi-sector system response. In this chapter, we provide updates on emissions trends and changes in drivers and pressures in the AFOLU sector, describe the practices available in the AFOLU sector, and provide refined estimates of mitigation costs and potentials for the AFOLU sector, by synthesising studies that have become available since AR4. We conclude the chapter by identifying gaps in knowledge and data, providing a selection of Frequently Asked Questions, and presenting an Appendix on bioenergy to update the IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN)

    КОМПЛЕКС ДЛЯ ЛОКАЛЬНОЙ ИОННОЙ ИМПЛАНТАЦИИ И ЭЛЕМЕНТНОГО МИКРОАНАЛИЗА С ВЫВОДОМ ИОННОГО ПУЧКА В АТМОСФЕРУ

    Get PDF
    A measuring system for local elemental analysis is constructed on the basis of an ion accelerator AN-2500. It comprises a device of an in-air ion beam extraction through a tapered glass capillary and a PIXE spectrometer. The angular dependence of the proton beam possessing the transmission energy of 150-250 keV through the tapered capillary with the output diameters of 5 and 10μm is determined. The transit of protons through the capillary is found to be in threshold character and to be determined by the charging rate of its internal surface. The characteristics of current and energy of the ion beam extracted into the atmosphere are analyzed. It is found that the value of output current can be varied from 0.5 to 3 nA, while the ion energy is almost equal to the initial beam energy. The PIXE energy spectra of various materials are measured at the atmospheric pressure. It is found that the output beam intensity is enough for an accurate determination of the elemental composition of the samples under analysis.На базе ионного ускорителя -2500 изготовлен и апробирован измерительный комплекс для локального элементного анализа, состоящий из устройства вывода ионного пучка в атмосферу на основе конического стеклянного капилляра и спектрометра характеристического рентгеновского излучения (ХРИ). Измерены угловые зависимости коэффициента пропускания протонного пучка с энергией 150–250 кэВ через конусообразные капилляры с выходными диаметрами 5 и 10 мкм. Показано, что прохождение протонов через капилляр носит пороговый характер и определяется степенью зарядки его внутренней поверхности. Исследованы токовые и энергетические характеристики ионного пучка, выведенного в атмосферу. Показано, что величина выходного тока может изменяться от 0,5 до 3 нА и энергия ионов практически равна энергии исходного пучка. Измерены энергетические спектры ХРИ при атмосферном давлении от различных материалов, включая и костную ткань. Показано, что интенсивности выходного пучка достаточно для достоверного определения элементного состава исследуемых образцов

    Electron-Transfer Oxidation of Chlorophenols by Uranyl Ion Excited State in Aqueous Solution. Steady-State and Nanosecond Flash Photolysis Studies

    Get PDF
    The oxidation of chlorophenols by photoexcited uranyl ion was studied in aqueous solution at concentrations where the ground-state interactions were negligible. Nanosecond flash photolysis showed that a clean electron-transfer process from the chlorophenols to the excited uranyl ion is involved. This is suggested to lead to the formation of a U(V)/chlorophenoxyl radical pair complex. The efficiency of this charge-transfer process is unity for the three chlorophenols. However, low product yields suggest that in the absence of oxygen, back electron transfer, both within the radical pair and from separated uranium(V) to phenoxyl radicals, appears to be the major reaction pathway. In the presence of oxygen the quantum yields of disappearance of chlorophenol and of photoproduct formation increased. This leads to the conclusion that oxygen favors reaction with uranium(V) and/or the uranium(V)−phenoxyl radical pair, leading to the formation of the superoxide anion and its conjugate acid, HO2•, which then regenerate UO22+. Based on this, a catalytic cycle for chlorophenol photooxidation involving uranyl ion and molecular oxygen is proposed

    How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?

    No full text
    Feeding 9–10 billion people by 2050 and preventing dangerous climate change are two of the greatest challenges facing humanity. Both challenges must be met while reducing the impact of land management on ecosystem services that deliver vital goods and services, and support human health and well-being. Few studies to date have considered the interactions between these challenges. In this study we briefly outline the challenges, review the supply- and demand-side climate mitigation potential available in the Agriculture, Forestry and Other Land Use AFOLU sector and options for delivering food security. We briefly outline some of the synergies and trade-offs afforded by mitigation practices, before presenting an assessment of the mitigation potential possible in the AFOLU sector under possible future scenarios in which demand-side measures codeliver to aid food security. We conclude that while supply-side mitigation measures, such as changes in land management, might either enhance or negatively impact food security, demand-side mitigation measures, such as reduced waste or demand for livestock products, should benefit both food security and greenhouse gas (GHG) mitigation. Demand-side measures offer a greater potential (1.5–15.6 Gt CO2-eq. yr−1) in meeting both challenges than do supply-side measures (1.5–4.3 Gt CO2-eq. yr−1 at carbon prices between 20 and 100 US$ tCO2-eq. yr−1), but given the enormity of challenges, all options need to be considered. Supply-side measures should be implemented immediately, focussing on those that allow the production of more agricultural product per unit of input. For demand-side measures, given the difficulties in their implementation and lag in their effectiveness, policy should be introduced quickly, and should aim to codeliver to other policy agenda, such as improving environmental quality or improving dietary health. These problems facing humanity in the 21st Century are extremely challenging, and policy that addresses multiple objectives is required now more than ever
    corecore