43 research outputs found

    IPP-rich milk protein hydrolysate lowers blood pressure in subjects with stage 1 hypertension, a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Milk derived peptides have been identified as potential antihypertensive agents. The primary objective was to investigate the effectiveness of IPP-rich milk protein hydrolysates (MPH) on reducing blood pressure (BP) as well as to investigate safety parameters and tolerability. The secondary objective was to confirm or falsify ACE inhibition as the mechanism underlying BP reductions by measuring plasma renin activity and angiotensin I and II.</p> <p>Methods</p> <p>We conducted a randomized, placebo-controlled, double blind, crossover study including 70 Caucasian subjects with prehypertension or stage 1 hypertension. Study treatments consisted of daily consumption of two capsules MPH1 (each containing 7.5 mg Isoleucine-Proline-Proline; IPP), MPH2 (each containing 6.6 mg Methionine-Alanine-Proline, 2.3 mg Leucine-Proline-Proline, 1.8 mg IPP), or placebo (containing cellulose) for 4 weeks.</p> <p>Results</p> <p>In subjects with stage 1 hypertension, MPH1 lowered systolic BP by 3.8 mm Hg (P = 0.0080) and diastolic BP by 2.3 mm Hg (P = 0.0065) compared with placebo. In prehypertensive subjects, the differences in BP between MPH1 and placebo were not significant. MPH2 did not change BP significantly compared with placebo in stage I hypertensive or prehypertensive subjects. Intake of MPHs was well tolerated and safe. No treatment differences in hematology, clinical laboratory parameters or adverse effects were observed. No significant differences between MPHs and placebo were found in plasma renin activity, or angiotensin I and II.</p> <p>Conclusions</p> <p>MPH1, containing IPP and no minerals, exerts clinically relevant BP lowering effects in subjects with stage 1 hypertension. It may be included in lifestyle changes aiming to prevent or reduce high BP.</p> <p>Trial registration</p> <p>ClinicalTrials.gov NCT00471263</p

    Dietary Protein and Blood Pressure: A Systematic Review

    Get PDF
    Background - Elevated blood pressure (BP), which is a major risk factor for cardiovascular disease, is highly prevalent worldwide. Recently, interest has grown in the role of dietary protein in human BP. We performed a systematic review of all published scientific literature on dietary protein, including protein from various sources, in relation to human BP. Methodology/Principal Findings - We performed a MEDLINE search and a manual search to identify English language studies on the association between protein and blood pressure, published before June 2010. A total of 46 papers met the inclusion criteria. Most observational studies showed no association or an inverse association between total dietary protein and BP or incident hypertension. Results of biomarker studies and randomized controlled trials indicated a beneficial effect of protein on BP. This beneficial effect may be mainly driven by plant protein, according to results in observational studies. Data on protein from specific sources (e.g. from fish, dairy, grain, soy, and nut) were scarce. There was some evidence that BP in people with elevated BP and/or older age could be more sensitive to dietary protein. Conclusions/Significance - In conclusion, evidence suggests a small beneficial effect of protein on BP, especially for plant protein. A blood pressure lowering effect of protein may have important public health implications. However, this warrants further investigation in randomized controlled trials. Furthermore, more data are needed on protein from specific sources in relation to BP, and on the protein-BP relation in population subgroup

    The Rotterdam Study: 2016 objectives and design update

    Full text link

    Aging affects GABAergic function and calcium homeostasis in the mammalian central clock

    Get PDF
    IntroductionAging impairs the function of the central circadian clock in mammals, the suprachiasmatic nucleus (SCN), leading to a reduction in the output signal. The weaker timing signal from the SCN results in a decline in rhythm strength in many physiological functions, including sleep–wake patterns. Accumulating evidence suggests that the reduced amplitude of the SCN signal is caused by a decreased synchrony among the SCN neurons. The present study was aimed to investigate the hypothesis that the excitation/inhibition (E/I) balance plays a role in synchronization within the network.MethodsUsing calcium (Ca2+) imaging, the polarity of Ca2+ transients in response to GABA stimulation in SCN slices of old mice (20–24 months) and young controls was studied.ResultsWe found that the amount of GABAergic excitation was increased, and that concordantly the E/I balance was higher in SCN slices of old mice when compared to young controls. Moreover, we showed an effect of aging on the baseline intracellular Ca2+ concentration, with higher Ca2+ levels in SCN neurons of old mice, indicating an alteration in Ca2+ homeostasis in the aged SCN. We conclude that the change in GABAergic function, and possibly the Ca2+ homeostasis, in SCN neurons may contribute to the altered synchrony within the aged SCN network

    Commento agli artt. 670-676 c.p.p.

    Get PDF
    Sono esaminati i contributi giurisprudenziali e dottrinali relativi agli articoli del codice di procedura penale in tema di titolo esecutivi e competenza del giudice dell’esecuzion

    Dietary acid load and rapid progression to end-stage renal disease of diabetic nephropathy in Westernized South Asian people

    No full text
    Diabetic nephropathy is now the most common cause of end-stage renal failure in many countries of the world. Despite increasing implementation of preventive treatment, the chance that an individual diabetic patient will reach end-stage renal failure has been increasing rather than decreasing during recent decades. Current dietary habits in The Netherlands and the rest of the Western world are slowly shifting from relatively alkalinizing (e.g., potatoes and vegetables) toward more acidifying (e.g., rice and meat). Moreover, immigrants who consumed traditional diets in their homelands, usually adapt to Western dietary habits. This phenomenon of diet acculturation could, for instance, be involved in the up to 40 times higher chance of development of end-stage renal failure in association with diabetes in South-Asian immigrants compared with whites, in Western countries. High ingestion of nonvolatile acids with food increases susceptibility for progression to end-stage renal failure. These high dietary acid loads lead to compensatory increases in renal acid excretion and ammoniagenesis. The price paid for maintenance of acid-base homeostasis is renal tubulointerstitial injury, with subsequent decline in renal function and induction of hypertension. The tendency for metabolic acidosis that results from the changing dietary habits could be corrected by a shift toward more alkalinizing food. We hypothesize that promoting such a shift can prevent the epidemic of end-stage renal failure in diabetes

    Dietary protein, blood pressure and renal function in renal transplant recipients

    Get PDF
    <p>Hypertension is highly prevalent among renal transplant recipients (RTR) and a risk factor for graft failure and cardiovascular events. Protein intake has been claimed to affect blood pressure (BP) in the general population and may affect renal function. We examined the association of dietary protein with BP and renal function in RTR. We included 625 RTR (age 53 (SD 13) years; 57% male). Protein intake was assessed with a FFQ, differentiating between animal and plant protein. BP was measured according to a strict protocol. Creatinine clearance and albuminuria were measured as renal parameters. Protein intake was 83 (SD 12) g/d, of which 63% derived from animal sources. BP was 136 (SD 17) mmHg systolic (SBP) and 83 (SD 11) mmHg diastolic (DBP). Creatinine clearance was 66 (SD 26) ml/min; albuminuria 41 (10-178) mg/24 h. An inverse, though statistically insignificant, association was found between the total protein intake and both SBP (beta = -2.22 mmHg per SD, P=0.07) and DBP (beta = -0.48 mmHg per SD, P=0.5). Protein intake was not associated with creatinine clearance. Although albuminuria was slightly higher in the highest tertile of animal protein intake compared with the lowest tertile (66 v. 33 mg/d, respectively, P=0.03), linear regression analyses did not reveal significant associations between dietary protein and albuminuria. Protein intake exceeded the current recommendations. Nevertheless, within the range of protein intake in our RTR population, we found no evidence for an association of dietary protein with BP and renal function. Intervention studies focusing on different protein types are warranted to clarify their effect on BP and renal function in RTR.</p>

    Exposure to long photoperiod increases peak time distribution.

    No full text
    <p>(A) Representative histograms of peak times of two individual slices from the anterior SCN in long (LP, <i>n</i> = 177 cells) and short photoperiod (SP, <i>n</i> = 183 cells) plotted in external time (ExT). (B) Phase distribution is defined as the standard deviation (SD) of peak time, of the first cycle <i>in vitro</i> (top panel). Phase distribution was calculated per slice, and is shown for the anterior and posterior SCN (bottom panel), in LP (green squares) and SP (red circles). Black bars indicate mean ± SEM; *** <i>p</i> < 0.001.</p
    corecore