1,768 research outputs found
A unitary isobar model for pion photo- and electroproduction on the proton up to 1 GeV
A new operator for pion photo- and electroproduction has been developed for
nuclear applications at photon equivalent energies up to 1 GeV. The model
contains Born terms, vector mesons and nucleon resonances (,
, , , , and
). The resonance contributions are included taking into account
unitarity to provide the correct phases of the pion photoproduction multipoles.
The dependence of electromagnetic resonance vertices is described with
appropriate form factors in the electromagnetic helicity amplitudes. Within
this model we have obtained good agreement with the experimental data for pion
photo- and electroproduction on the nucleon for both differential cross
sections and polarization observables. The model can be used as a starting
point to predict and analyze forthcoming data.Comment: 32 pages LaTeX including 23 postscript figures (a few misprints have
been corrected
Thermodynamic analysis of black hole solutions in gravitating nonlinear electrodynamics
We perform a general study of the thermodynamic properties of static
electrically charged black hole solutions of nonlinear electrodynamics
minimally coupled to gravitation in three space dimensions. The Lagrangian
densities governing the dynamics of these models in flat space are defined as
arbitrary functions of the gauge field invariants, constrained by some
requirements for physical admissibility. The exhaustive classification of these
theories in flat space, in terms of the behaviour of the Lagrangian densities
in vacuum and on the boundary of their domain of definition, defines twelve
families of admissible models. When these models are coupled to gravity, the
flat space classification leads to a complete characterization of the
associated sets of gravitating electrostatic spherically symmetric solutions by
their central and asymptotic behaviours. We focus on nine of these families,
which support asymptotically Schwarzschild-like black hole configurations, for
which the thermodynamic analysis is possible and pertinent. In this way, the
thermodynamic laws are extended to the sets of black hole solutions of these
families, for which the generic behaviours of the relevant state variables are
classified and thoroughly analyzed in terms of the aforementioned boundary
properties of the Lagrangians. Moreover, we find universal scaling laws (which
hold and are the same for all the black hole solutions of models belonging to
any of the nine families) running the thermodynamic variables with the electric
charge and the horizon radius. These scale transformations form a one-parameter
multiplicative group, leading to universal "renormalization group"-like
first-order differential equations. The beams of characteristics of these
equations generate the full set of black hole states associated to any of these
gravitating nonlinear electrodynamics...Comment: 51 single column pages, 19 postscript figures, 2 tables, GRG tex
style; minor corrections added; final version appearing in General Relativity
and Gravitatio
3-Message Zero Knowledge Against Human Ignorance
The notion of Zero Knowledge has driven the field of cryptography since its conception over thirty years ago. It is well established that two-message zero-knowledge protocols for NP do not exist, and that four-message zero-knowledge arguments exist under the minimal assumption of one-way functions. Resolving the precise round complexity of zero-knowledge has been an outstanding open problem for far too long.
In this work, we present a three-message zero-knowledge argument system with soundness against uniform polynomial-time cheating provers. The main component in our construction is the recent delegation protocol for RAM computations (Kalai and Paneth, TCC 2016B and Brakerski, Holmgren and Kalai, ePrint 2016). Concretely, we rely on a three-message variant of their protocol based on a key-less collision-resistant hash functions secure against uniform adversaries as well as other standard primitives.
More generally, beyond uniform provers, our protocol provides a natural and meaningful security guarantee against real-world adversaries, which we formalize following Rogaway’s “human-ignorance” approach (VIETCRYPT 2006): in a nutshell, we give an explicit uniform reduction from any adversary breaking the soundness of our protocol to finding collisions in the underlying hash function.National Science Foundation (U.S.) (Award CNS-1350619)National Science Foundation (U.S.) (Award CNS-1413964
Multifragmentation threshold in ^{93}Nb+{nat}Mg collisions at 30 MeV/nucleon
We analyzed the on reaction at 30 MeV/nucleon in the aim
of disentangling binary sequential decay and multifragmentation decay close to
the energy threshold, i.e. MeV/nucleon. Using the backtracing
technique applied to the statistical models GEMINI and SMM we reconstruct
simulated charge, mass and excitation energy distributions and compare them to
the experimental ones. We show that data are better described by SMM than by
GEMINI in agreement with the fact that multifragmentation is responsible for
fragment production at excitation energies around 3 MeV/nucleon.Comment: 16 pages, 12 figures, 5 tables Soumis \`a Nuclear Physics
Steady-state modulation of voltage-gated K+ channels in rat arterial smooth muscle by cyclic AMP-dependent protein kinase and protein phosphatase 2B
Voltage-gated potassium channels (Kv) are important regulators of membrane potential in vascular smooth muscle cells, which is integral to controlling intracellular Ca2+ concentration and regulating vascular tone. Previous work indicates that Kv channels can be modulated by receptor-driven alterations of cyclic AMP-dependent protein kinase (PKA) activity. Here, we demonstrate that Kv channel activity is maintained by tonic activity of PKA. Whole-cell recording was used to assess the effect of manipulating PKA signalling on Kv and ATP-dependent K+ channels of rat mesenteric artery smooth muscle cells. Application of PKA inhibitors, KT5720 or H89, caused a significant inhibition of Kv currents. Tonic PKA-mediated activation of Kv appears maximal as application of isoprenaline (a β-adrenoceptor agonist) or dibutyryl-cAMP failed to enhance Kv currents. We also show that this modulation of Kv by PKA can be reversed by protein phosphatase 2B/calcineurin (PP2B). PKA-dependent inhibition of Kv by KT5720 can be abrogated by pre-treatment with the PP2B inhibitor cyclosporin A, or inclusion of a PP2B auto-inhibitory peptide in the pipette solution. Finally, we demonstrate that tonic PKA-mediated modulation of Kv requires intact caveolae. Pre-treatment of the cells with methyl-β-cyclodextrin to deplete cellular cholesterol, or adding caveolin-scaffolding domain peptide to the pipette solution to disrupt caveolae-dependent signalling each attenuated PKA-mediated modulation of the Kv current. These findings highlight a novel, caveolae-dependent, tonic modulatory role of PKA on Kv channels providing new insight into mechanisms and the potential for pharmacological manipulation of vascular tone
Computational fact checking from knowledge networks
Traditional fact checking by expert journalists cannot keep up with the
enormous volume of information that is now generated online. Computational fact
checking may significantly enhance our ability to evaluate the veracity of
dubious information. Here we show that the complexities of human fact checking
can be approximated quite well by finding the shortest path between concept
nodes under properly defined semantic proximity metrics on knowledge graphs.
Framed as a network problem this approach is feasible with efficient
computational techniques. We evaluate this approach by examining tens of
thousands of claims related to history, entertainment, geography, and
biographical information using a public knowledge graph extracted from
Wikipedia. Statements independently known to be true consistently receive
higher support via our method than do false ones. These findings represent a
significant step toward scalable computational fact-checking methods that may
one day mitigate the spread of harmful misinformation
Diameters in preferential attachment models
In this paper, we investigate the diameter in preferential attachment (PA-)
models, thus quantifying the statement that these models are small worlds. The
models studied here are such that edges are attached to older vertices
proportional to the degree plus a constant, i.e., we consider affine PA-models.
There is a substantial amount of literature proving that, quite generally,
PA-graphs possess power-law degree sequences with a power-law exponent \tau>2.
We prove that the diameter of the PA-model is bounded above by a constant
times \log{t}, where t is the size of the graph. When the power-law exponent
\tau exceeds 3, then we prove that \log{t} is the right order, by proving a
lower bound of this order, both for the diameter as well as for the typical
distance. This shows that, for \tau>3, distances are of the order \log{t}. For
\tau\in (2,3), we improve the upper bound to a constant times \log\log{t}, and
prove a lower bound of the same order for the diameter. Unfortunately, this
proof does not extend to typical distances. These results do show that the
diameter is of order \log\log{t}.
These bounds partially prove predictions by physicists that the typical
distance in PA-graphs are similar to the ones in other scale-free random
graphs, such as the configuration model and various inhomogeneous random graph
models, where typical distances have been shown to be of order \log\log{t} when
\tau\in (2,3), and of order \log{t} when \tau>3
- …