31 research outputs found

    Formation and thermal stability of ω-Ti(Fe) in α-phase-based Ti(Fe) alloys

    Get PDF
    In this work, the formation and thermal stability of the ω-Ti(Fe) phase that were produced by the high-pressure torsion (HPT) were studied in two-phase α-Ti + TiFe alloys containing 2 wt.%, 4 wt.% and 10 wt.% iron. The two-phase microstructure was achieved by annealing the alloys at 470 °C for 4000 h and then quenching them in water. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were utilized to characterize the samples. The thermal stability of the ω-Ti(Fe) phase was investigated using differential scanning calorimetry (DSC) and in situ high-temperature XRD. In the HPT process, the high-pressure ω-Ti(Fe) phase mainly formed from α-Ti. It started to decompose by a cascade of exothermic reactions already at temperatures of 130 °C. The decomposition was finished above ~320 °C. Upon further heating, the phase transformation proceeded via the formation of a supersaturated α-Ti(Fe) phase. Finally, the equilibrium phase assemblage was established at high temperatures. The eutectoid temperature and the phase transition temperatures measured in deformed and heat-treated samples are compared for the samples with different iron concentrations and for samples with different phase compositions prior to the HPT process. Thermodynamic calculations were carried out to predict stable and metastable phase assemblages after heat-treatments at low (α-Ti + TiFe) and high temperatures (α-Ti + β-(Ti,Fe), β-(Ti,Fe))

    Assessment techniques, database design and software facilities for thermodynamics and diffusion

    Get PDF
    The purpose of this article is to give a set of recommendations to producers of assessed thermodynamic data, who may be involved in either the critical evaluation of limited chemical systems or the creation and dissemination of larger thermodynamic databases. Also, it is hoped that reviewers and editors of scientific publications in this field will find some of the information useful. Good practice in the assessment process is essential, particularly as datasets from many different sources may be combined together into a single database. With this in mind, we highlight some problems that can arise during the assessment process and we propose a quality assurance procedure. It is worth mentioning at this point, that the provision of reliable assessed thermodynamic data relies heavily on the availability of high quality experimental information. The different software packages for thermodynamics and diffusion are described here only briefly

    Thermodynamics of pyrope-majorite, Mg3Al2Si3O12-Mg4Si4O12, solid solution from atomistic model calculations

    Get PDF
    Static lattice energy calculations, based on empirical pair potentials have been performed for a large set of different structures with compositions between pyrope and majorite, and with different states of order of octahedral cations. The energies have been cluster expanded using pair and quaternary terms. The derived ordering constants have been used to constrain Monte Carlo simulations of temperature-dependent properties in the ranges of 1073 3673K and 0 20 GPa. The free energies of mixing have been calculated using the method of thermodynamic integration. At zero pressure the cubic/tetragonal transition is predicted for pure majorite at 3300 K. The transition temperature decreases with the increase of the pyrope mole fraction. A miscibility gap associated with the transition starts to develop at about 2000K and xmaj 0.8, and widens with the decrease in temperature and the increase in pressure. Activity composition relations in the range of 0 20 GPa and 1073 2673K are described with the help of a high-order Redlich Kister polynomial

    The magnesium-oxygen-tellurium system

    No full text

    Phase equilibria in the CoO-SiO2 system

    No full text

    The magnesium-oxygen-sulfur system

    No full text
    corecore