19 research outputs found

    Random global coupling induces synchronization and nontrivial collective behavior in networks of chaotic maps

    Full text link
    The phenomena of synchronization and nontrivial collective behavior are studied in a model of coupled chaotic maps with random global coupling. The mean field of the system is coupled to a fraction of elements randomly chosen at any given time. It is shown that the reinjection of the mean field to a fraction of randomly selected elements can induce synchronization and nontrivial collective behavior in the system. The regions where these collective states emerge on the space of parameters of the system are calculated.Comment: 2 pages, 2 figs, accepted in The European Physical Journa

    Generalized synchronization of chaos in autonomous systems

    Full text link
    We extend the concept of generalized synchronization of chaos, a phenomenon that occurs in driven dynamical systems, to the context of autonomous spatiotemporal systems. It means a situation where the chaotic state variables in an autonomous system can be synchronized to each other but not to a coupling function defined from them. The form of the coupling function is not crucial; it may not depend on all the state variables nor it needs to be active for all times for achieving generalized synchronization. The procedure is based on the analogy between a response map subject to an external drive acting with a probability p and an autonomous system of coupled maps where a global interaction between the maps takes place with this same probability. It is shown that, under some circumstances, the conditions for stability of generalized synchronized states are equivalent in both types of systems. Our results reveal the existence of similar minimal conditions for the emergence of generalized synchronization of chaos in driven and in autonomous spatiotemporal systems.Comment: 5 pages, 7 figures, accepted in PR

    Phase separation in coupled chaotic maps on fractal networks

    Full text link
    The phase ordering dynamics of coupled chaotic maps on fractal networks are investigated. The statistical properties of the systems are characterized by means of the persistence probability of equivalent spin variables that define the phases. The persistence saturates and phase domains freeze for all values of the coupling parameter as a consequence of the fractal structure of the networks, in contrast to the phase transition behavior previously observed in regular Euclidean lattices. Several discontinuities and other features found in the saturation persistence curve as a function of the coupling are explained in terms of changes of stability of local phase configurations on the fractals.Comment: (4 pages, 4 Figs, Submitted to PRE

    Chaos synchronization with coexisting global fields

    No full text
    We investigate the phenomenon of chaos synchronization in systems subject to coexisting autonomous and external global fields by employing a simple model of coupled maps. Two states of chaos synchronization are found: (i) complete synchronization, where the maps synchronize among themselves and to the external field, and (ii) generalized or internal synchronization, where the maps synchronize among themselves but not to the external global field. We show that the stability conditions for both states can be achieved for a system of minimum size of two maps. We consider local maps possessing robust chaos and characterize the synchronization states on the space of parameters of the system. The state of generalized synchronization of chaos arises even when the drive and the local maps have the same functional form. This behavior is similar to the process of spontaneous ordering against an external field found in nonequilibrium systems
    corecore