636 research outputs found

    The role of agri-environment schemes in conservation and environmental management.

    Get PDF
    Over half of the European landscape is under agricultural management and has been for millennia. Many species and ecosystems of conservation concern in Europe depend on agricultural management and are showing ongoing declines. Agri-environment schemes (AES) are designed partly to address this. They are a major source of nature conservation funding within the European Union (EU) and the highest conservation expenditure in Europe. We reviewed the structure of current AES across Europe. Since a 2003 review questioned the overall effectiveness of AES for biodiversity, there has been a plethora of case studies and meta-analyses examining their effectiveness. Most syntheses demonstrate general increases in farmland biodiversity in response to AES, with the size of the effect depending on the structure and management of the surrounding landscape. This is important in the light of successive EU enlargement and ongoing reforms of AES. We examined the change in effect size over time by merging the data sets of 3 recent meta-analyses and found that schemes implemented after revision of the EU's agri-environmental programs in 2007 were not more effective than schemes implemented before revision. Furthermore, schemes aimed at areas out of production (such as field margins and hedgerows) are more effective at enhancing species richness than those aimed at productive areas (such as arable crops or grasslands). Outstanding research questions include whether AES enhance ecosystem services, whether they are more effective in agriculturally marginal areas than in intensively farmed areas, whether they are more or less cost-effective for farmland biodiversity than protected areas, and how much their effectiveness is influenced by farmer training and advice? The general lesson from the European experience is that AES can be effective for conserving wildlife on farmland, but they are expensive and need to be carefully designed and targeted.This is the final published version. It first appeared from Wiley http://dx.doi.org/10.1111/cobi.1253

    Computational Stem Cell Biology: Open Questions and Guiding Principles

    Get PDF
    Computational biology is enabling an explosive growth in our understanding of stem cells and our ability to use them for disease modeling, regenerative medicine, and drug discovery. We discuss four topics that exemplify applications of computation to stem cell biology: cell typing, lineage tracing, trajectory inference, and regulatory networks. We use these examples to articulate principles that have guided computational biology broadly and call for renewed attention to these principles as computation becomes increasingly important in stem cell biology. We also discuss important challenges for this field with the hope that it will inspire more to join this exciting area

    The discovery of ash dieback in the UK: the making of a focusing event

    Get PDF
    Why did the identification of ‘Ash Dieback’ (Chalara Fraxinea) in 2012 in the UK catch the national media, public and political zeitgeist, and lead to policy changes, in a way that no other contemporary tree pest or pathogen outbreak has?The identification of Ash Dieback in the UK is conceptualised as a successful ‘focusing event’ and the ways in which it was socially constructed by the media, stakeholders and the government are analysed. National newspaper coverage contributed to the way that the disease was understood and was significant in driving the political response. Ash Dieback’s focal power derived from the perceived scale and nature of its impact; the initial attribution of blame on government; the ‘war-like’ response from the government; and Ash’s status as a threatened ‘native’ tree. The Ash Dieback focusing event has increased the salience of plant health issues amongst policymakers, the public and conservation organisations in the UK

    A common genetic variant of a mitochondrial RNA processing enzyme predisposes to insulin resistance

    Get PDF
    Mitochondrial energy metabolism plays an important role in the pathophysiology of insulin resistance. Recently, a missense N437S variant was identified in the MRPP3 gene, which encodes a mitochondrial RNA processing enzyme within the RNase P complex, with predicted impact on metabolism. We used CRISPR-Cas9 genome editing to introduce this variant into the mouse Mrpp3 gene and show that the variant causes insulin resistance on a high-fat diet. The variant did not influence mitochondrial gene expression markedly, but instead, it reduced mitochondrial calcium that lowered insulin release from the pancreatic islet ÎČ cells of the Mrpp3 variant mice. Reduced insulin secretion resulted in lower insulin levels that contributed to imbalanced metabolism and liver steatosis in the Mrpp3 variant mice on a high-fat diet. Our findings reveal that the MRPP3 variant may be a predisposing factor to insulin resistance and metabolic disease in the human population

    The effects of stand characteristics on the understory vegetation in Quercus petraea and Q. cerris dominated forests

    Get PDF
    The shelterwood system used in Hungary has many effects on the composition and structure of the herb layer. The aim of our study was to identify the main variables that affect the occurence of herbs and seedlings in Turkey oak-sessile oak (Quercus cerris and Q. petraea) stands. The study was carried out in the BĂŒkk mountains, Hungary. 122 sampling plots were established in 50-150 year old oak forests, where we studied the species composition and structure of the understorey and overstorey. The occurence of herbs was affected by canopy closure, the heterogenity and patchiness of the stand, the slope and the east-west component of the aspect. The composition of saplings was significantly explained by the ratio of the two major oak species in the stand and the proximity of the adult plants. An important result for forest management was that sessile oaks were able to regenerate almost only where they were dominant in the overstorey

    Asmparts: assembly of biological model parts

    Get PDF
    We propose a new computational tool to produce models of biological systems by assembling models from biological parts. Our software not only takes advantage of modularity, but it also enforces standardisation in part characterisation by considering a model of each part. We have used model parts in SBML to design transcriptional networks. Our software is open source, it works in linux and windows platforms, and it could be used to automatically produce models in a server. Our tool not only facilitates model design, but it will also help to promote the establishment of a registry of model parts

    Stronger diversity effects with increased environmental stress : a study of multitrophic interactions between oak, powdery mildew and ladybirds

    Get PDF
    Recent research has suggested that increasing neighbourhood tree species diversity may mitigate the impact of pests or pathogens by supporting the activities of their natural enemies and/or reducing the density of available hosts. In this study, we attempted to assess these mechanisms in a multitrophic study system of young oak (Quercus), oak powdery mildew (PM, caused by Erysiphe spp.) and a mycophagous ladybird (Psyllobora vigintiduo-punctata). We assessed ladybird mycophagy on oak PM in function of different neighbourhood tree species compositions. We also evaluated whether these species interactions were modulated by environmental conditions as suggested by the Stress Gradient Hypothesis. We adopted a complementary approach of a field experiment where we monitored oak saplings subjected to a reduced rainfall gradient in a young planted forest consisting of different tree species mixtures, as well as a lab experiment where we independently evaluated the effect of different watering treatments on PM infections and ladybird mycophagy. In the field experiment, we found effects of neighbourhood tree species richness on ladybird mycophagy becoming more positive as the target trees received less water. This effect was only found as weather conditions grew drier. In the lab experiment, we found a preference of ladybirds to graze on infected leaves from trees that received less water. We discuss potential mechanisms that might explain this preference, such as emissions of volatile leaf chemicals. Our results are in line with the expectations of the Natural Enemies Hypothesis and support the hypothesis that biodiversity effects become stronger with increased environmental stress
    • 

    corecore