54 research outputs found

    Long-path averaged mixing ratios of O<sub>3</sub> and NO<sub>2</sub> in the free troposphere from mountain MAX-DOAS

    Get PDF
    A new approximation is proposed to estimate O3 and NO2 mixing ratios in the northern subtropical free troposphere (FT). The proposed method uses O4 slant column densities (SCDs) at horizontal and near-zenith geometries to estimate a station-level differential path. The modified geometrical approach (MGA) is a simple method that takes advantage of a very long horizontal path to retrieve mixing ratios in the range of a few pptv. The methodology is presented, and the possible limitations are discussed. Multi-axis differential optical absorption spectroscopy (MAX-DOAS) high-mountain measurements recorded at the Izaña observatory (28° 18' N, 16° 29' W) are used in this study. The results show that under low aerosol loading, O3 and NO2 mixing ratios can be retrieved even at very low concentrations. The obtained mixing ratios are compared with those provided by in situ instrumentation at the observatory. The MGA reproduces the O3 mixing ratio measured by the in situ instrumentation with a difference of 28%. The different air masses scanned by each instrument are identified as a cause of the discrepancy between the O3 observed by MAX-DOAS and the in situ measurements. The NO2 is in the range of 20–40 ppt, which is below the detection limit of the in situ instrumentation, but it is in agreement with measurements from previous studies for similar conditions

    NO2 seasonal evolution in the north subtropical free troposphere

    Get PDF
    Three years of multi-axis differential optical absorption spectroscopy (MAXDOAS) measurements (2011-2013) have been used for estimating the NO2 mixing ratio along a horizontal line of sight from the high mountain subtropical observatory of Izaña, at 2370 m a.s.l. (NDACC station, 28.3° N, 16.5° W). The method is based on horizontal path calculation from the O2-O2 collisional complex at the 477 nm absorption band which is measured simultaneously to the NO2 column density, and is applicable under low aerosol-loading conditions. The MAXDOAS technique, applied in horizontal mode in the free troposphere, minimizes the impact of the NO2 contamination resulting from the arrival of marine boundary layer (MBL) air masses from thermally forced upwelling breeze during middle hours of the day. Comparisons with in situ observations show that during most of the measuring period, the MAXDOAS is insensitive or very slightly sensitive to the upwelling breeze. Exceptions are found for pollution events during southern wind conditions. On these occasions, evidence of fast, efficient and irreversible transport from the surface to the free troposphere is found. Background NO2 volume mixing ratio (vmr), representative of the remote free troposphere, is in the range of 20-45 pptv. The observed seasonal evolution shows an annual wave where the peak is in phase with the solar radiation. Model simulations with the chemistry-climate CAM-Chem model are in good agreement with the NO2 measurements, and are used to further investigate the possible drivers of the NO2 seasonality observed at Izaña.Peer Reviewe

    Behavior of NO2 and O3 columns during the eclipse of February 26, 1998, as measured by visible spectroscopy

    Get PDF
    Observations of the NO2 and O3 columns using zenith-viewing differential absorption spectroscopy in the visible range (450–540 nm) were carried out at Izaña Observatory (Tenerife, 28°N, 16°W, 2370 m above sea level.) during the eclipse of February 26, 1998 (95% occultation over the station). Ozone has been retrieved using two different spectral ranges to minimize the effect of the continuous change of the solar spectrum shape as the Sun is being occulted. Small variations before the maximum phase in agreement with previous observations are found, but because of the change in the shape of the solar spectrum, it cannot conclusively be determined whether the ozone changes are real or due to interferences with changing Fraunhofer lines. The difficulties in observing small changes of absorbing gases during solar eclipse when using remote sensing technique that uses the solar UV and visible radiation as the source are discussed. NO2 displays an increase in phase with the degree of solar occultation, as compared to a non eclipse day of 1.55±0.09. A simple model assuming that changes over short times scales are only due to changes in photodissociation, using O3 and temperatures obtained from an ozone sounding station close to the observatory, reproduces the observed variation when the NO2 bulk is assumed to be at an altitude of 28 km. Correction for differences between local solar zenith angle (SZA) and the SZA where the absorption takes place is taken into account.This work has been possible thanks to the support of the UE through the SCUVS-3 Project (ENV-4-CT95-0089)

    Iodine monoxide in the north subtropical free troposphere

    Get PDF
    Iodine monoxide (IO) differential slant column densities (DSCD) have been retrieved from a new multi-axis differential optical absorption spectroscopy (MAX-DOAS) instrument deployed at the Izaña subtropical observatory as part of the Network for the Detection of Atmospheric Composition Change (NDACC) programme. The station is located at 2370 m a.s.l., well above the trade wind inversion that limits the top of the marine boundary layer, and hence is representative of the free troposphere. We report daily observations from May to August 2010 at different viewing angles. During this period, the spectral signature of IO was unequivocally detected on every day of measurement. A mean IO DSCD of 1.52×10&lt;sub&gt;13&lt;/sub&gt; molecules cm&lt;sup&gt;−2&lt;/sup&gt; was observed at the 5° instrument elevation angle (IEA) on clear days using a single zenith reference for the reported period, with a day-to-day variability of 33% at one standard deviation. Based on the simulation of the DSCDs using radiative transfer calculations with five different hypothesized IO profiles, the IO mixing ratio is estimated to range between 0.2 and 0.4 pptv in the free troposphere. Episodes of Saharan dust outbreaks were also observed, with large increases in the DSCDs at higher IEA, suggesting an enhancement of IO inside the dust cloud

    MAX-DOAS measurements of HONO slant column densities during the MAD-CAT campaign: Inter-comparison, sensitivity studies on spectral analysis settings, and error budget

    Get PDF
    In order to promote the development of the passive DOAS technique the Multi Axis DOAS – Comparison campaign for Aerosols and Trace gases (MAD-CAT) was held at the Max Planck Institute for Chemistry in Mainz, Germany, from June to October 2013. Here, we systematically compare the differential slant column densities (dSCDs) of nitrous acid (HONO) derived from measurements of seven different instruments. We also compare the tropospheric difference of SCDs (delta SCD) of HONO, namely the difference of the SCDs for the non-zenith observations and the zenith observation of the same elevation sequence. Different research groups analysed the spectra from their own instruments using their individual fit software. All the fit errors of HONO dSCDs from the instruments with cooled large-size detectors are mostly in the range of 0.1 to 0.3  ×  1015 molecules cm−2 for an integration time of 1 min. The fit error for the mini MAX-DOAS is around 0.7  ×  1015 molecules cm−2. Although the HONO delta SCDs are normally smaller than 6  ×  1015 molecules cm−2, consistent time series of HONO delta SCDs are retrieved from the measurements of different instruments. Both fits with a sequential Fraunhofer reference spectrum (FRS) and a daily noon FRS lead to similar consistency. Apart from the mini-MAX-DOAS, the systematic absolute differences of HONO delta SCDs between the instruments are smaller than 0.63  ×  1015 molecules cm−2. The correlation coefficients are higher than 0.7 and the slopes of linear regressions deviate from unity by less than 16 % for the elevation angle of 1°. The correlations decrease with an increase in elevation angle. All the participants also analysed synthetic spectra using the same baseline DOAS settings to evaluate the systematic errors of HONO results from their respective fit programs. In general the errors are smaller than 0.3  ×  1015 molecules cm−2, which is about half of the systematic difference between the real measurements. The differences of HONO delta SCDs retrieved in the selected three spectral ranges 335–361, 335–373 and 335–390 nm are considerable (up to 0.57  ×  1015 molecules cm−2) for both real measurements and synthetic spectra. We performed sensitivity studies to quantify the dominant systematic error sources and to find a recommended DOAS setting in the three spectral ranges. The results show that water vapour absorption, temperature and wavelength dependence of O4 absorption, temperature dependence of Ring spectrum, and polynomial and intensity offset correction all together dominate the systematic errors. We recommend a fit range of 335–373 nm for HONO retrievals. In such fit range the overall systematic uncertainty is about 0.87  ×  1015 molecules cm−2, much smaller than those in the other two ranges. The typical random uncertainty is estimated to be about 0.16  ×  1015 molecules cm−2, which is only 25 % of the total systematic uncertainty for most of the instruments in the MAD-CAT campaign. In summary for most of the MAX-DOAS instruments for elevation angle below 5°, half daytime measurements (usually in the morning) of HONO delta SCD can be over the detection limit of 0.2  ×  1015 molecules cm−2 with an uncertainty of  ∼  0.9  ×  1015 molecules cm−2

    Twenty years of ground-based NDACC FTIR spectrometry at Izaña Observatory-overview and long-term comparison to other techniques

    Get PDF
    High-resolution Fourier transform infrared (FTIR) solar observations are particularly relevant for climate studies, as they allow atmospheric gaseous composition and multiple climate processes to be monitored in detail. In this context, the present paper provides an overview of 20 years of FTIR measurements taken in the framework of the NDACC (Network for the Detection of Atmospheric Composition Change) from 1999 to 2018 at the subtropical Izaña Observatory (IZO, Spain). Firstly, long-term instrumental performance is comprehensively assessed, corroborating the temporal stability and reliable instrumental characterization of the two FTIR spectrometers installed at IZO since 1999. Then, the time series of all trace gases contributing to NDACC at IZO are presented (i.e. C2_{2}H6_{6}, CH4_{4}, ClONO2_{2}, CO, HCl, HCN, H2_{2}CO, HF, HNO3_{3}, N2_{2}O, NO2_{2}, NO, O3_{3}, carbonyl sulfide (OCS), and water vapour isotopologues H2_{2}16^{16}O, H2_{2}18^{18}O, and HD16^{16}O), reviewing the major accomplishments drawn from these observations. In order to examine the quality and long-term consistency of the IZO FTIR observations, a comparison of those NDACC products for which other high-quality measurement techniques are available at IZO has been performed (i.e. CH4_{4}, CO, H2_{2}O, NO2_{2}, N2_{2}O, and O3_{3}). This quality assessment was carried out on different timescales to examine what temporal signals are captured by the FTIR records, and to what extent. After 20 years of operation, the IZO NDACC FTIR observations have been found to be very consistent and reliable over time, demonstrating great potential for climate research. Long-term NDACC FTIR data sets, such as IZO, are indispensable tools for the investigation of atmospheric composition trends, multi-year phenomena, and complex climate feedback processes, as well as for the validation of past and present space-based missions and chemistry climate models

    Is a scaling factor required to obtain closure between measured and modelled atmospheric O₄ absorptions? An assessment of uncertainties of measurements and radiative transfer simulations for 2 selected days during the MAD-CAT campaign

    Get PDF
    In this study the consistency between MAX-DOAS measurements and radiative transfer simulations of the atmospheric O4 absorption is investigated on 2 mainly cloud-free days during the MAD-CAT campaign in Mainz, Germany, in summer 2013. In recent years several studies indicated that measurements and radiative transfer simulations of the atmospheric O4 absorption can only be brought into agreement if a so-called scaling factor (<1) is applied to the measured O4 absorption. However, many studies, including those based on direct sunlight measurements, came to the opposite conclusion, that there is no need for a scaling factor. Up to now, there is no broad consensus for an explanation of the observed discrepancies between measurements and simulations. Previous studies inferred the need for a scaling factor from the comparison of the aerosol optical depths derived from MAX-DOAS O4 measurements with that derived from coincident sun photometer measurements. In this study a different approach is chosen: the measured O4 absorption at 360 nm is directly compared to the O4 absorption obtained from radiative transfer simulations. The atmospheric conditions used as input for the radiative transfer simulations were taken from independent data sets, in particular from sun photometer and ceilometer measurements at the measurement site. This study has three main goals: first all relevant error sources of the spectral analysis, the radiative transfer simulations and the extraction of the input parameters used for the radiative transfer simulations are quantified. One important result obtained from the analysis of synthetic spectra is that the O4 absorptions derived from the spectral analysis agree within 1 % with the corresponding radiative transfer simulations at 360 nm. Based on the results from sensitivity studies, recommendations for optimised settings for the spectral analysis and radiative transfer simulations are given. Second, the measured and simulated results are compared for 2 selected cloud-free days with similar aerosol optical depths but very different aerosol properties. On 18 June, measurements and simulations agree within their (rather large) uncertainties (the ratio of simulated and measured O4 absorptions is found to be 1.01±0.16). In contrast, on 8 July measurements and simulations significantly disagree: for the middle period of that day the ratio of simulated and measured O4 absorptions is found to be 0.82±0.10, which differs significantly from unity. Thus, for that day a scaling factor is needed to bring measurements and simulations into agreement. Third, recommendations for further intercomparison exercises are derived. One important recommendation for future studies is that aerosol profile data should be measured at the same wavelengths as the MAX-DOAS measurements. Also, the altitude range without profile information close to the ground should be minimised and detailed information on the aerosol optical and/or microphysical properties should be collected and used. The results for both days are inconsistent, and no explanation for a O4 scaling factor could be derived in this study. Thus, similar but more extended future studies should be performed, including more measurement days and more instruments. Also, additional wavelengths should be included
    corecore