376 research outputs found
Cancellation of the Chiral Anomaly in a Model with Spontaneous Symmetry Breaking
A perturbatively renormalized Abelian Higgs-Kibble model with a chirally
coupled fermion is considered. The Slavnov identity is fulfilled to all orders
of perturbation theory, which is crucial for renormalizability in models with
vector bosons. BRS invariance, i.e. the validity of the identity, forces the
chiral anomaly to be cancelled by Wess-Zumino counterterms. This procedure
preserves the renormalizability in the one-loop approximation but it violates
the Froissart bounds for partial wave amplitudes above some energy and destroys
renormalizability from the second order in h bar onwards due to the
counterterms. (The paper has 3 figs. in postscript which are not included; send
request to the author's e-mailbox with subject: figures . The author is willing
to mail hard copies of the paper.)Comment: 13 pages, plain TeX, SI 92-1
Classical simulation of entanglement swapping with bounded communication
Entanglement appears under two different forms in quantum theory, namely as a
property of states of joint systems and as a property of measurement
eigenstates in joint measurements. By combining these two aspects of
entanglement, it is possible to generate nonlocality between particles that
never interacted, using the protocol of entanglement swapping. We show that
even in the more constraining bilocal scenario where distant sources of
particles are assumed to be independent, i.e. to share no prior randomness,
this process can be simulated classically with bounded communication, using
only 9 bits in total. Our result thus provides an upper bound on the
nonlocality of the process of entanglement swapping.Comment: 6 pages, 1 figur
One-dimensional Ising ferromagnet frustrated by long-range interactions at finite temperatures
We consider a one-dimensional lattice of Ising-type variables where the
ferromagnetic exchange interaction J between neighboring sites is frustrated by
a long-ranged anti-ferromagnetic interaction of strength g between the sites i
and j, decaying as |i-j|^-alpha, with alpha>1. For alpha smaller than a certain
threshold alpha_0, which is larger than 2 and depends on the ratio J/g, the
ground state consists of an ordered sequence of segments with equal length and
alternating magnetization. The width of the segments depends on both alpha and
the ratio J/g. Our Monte Carlo study shows that the on-site magnetization
vanishes at finite temperatures and finds no indication of any phase
transition. Yet, the modulation present in the ground state is recovered at
finite temperatures in the two-point correlation function, which oscillates in
space with a characteristic spatial period: The latter depends on alpha and J/g
and decreases smoothly from the ground-state value as the temperature is
increased. Such an oscillation of the correlation function is exponentially
damped over a characteristic spatial scale, the correlation length, which
asymptotically diverges roughly as the inverse of the temperature as T=0 is
approached. This suggests that the long-range interaction causes the Ising
chain to fall into a universality class consistent with an underlying
continuous symmetry. The e^(Delta/T)-temperature dependence of the correlation
length and the uniform ferromagnetic ground state, characteristic of the g=0
discrete Ising symmetry, are recovered for alpha > alpha_0.Comment: 12 pages, 7 figure
Superconducting Transition Temperature in Heterogeneous Ferromagnet-Superconductor Systems
We study the shift of the the superconducting transition temperature in
ferromagnetic-superconducting bi-layers and in a superconducting film supplied
a square array of ferromagnetic dots. We find that the transition temperature
in these two cases change presumably in opposite direction and that its change
is not too small. We extend these results to multilayer structures. We predict
that rather small external magnetic field Oe can change the
transition temperature of the bilayer by 10% .Comment: 9 pages, 2 figure
Changes in Stroke Rehabilitation during the Sars-Cov-2 Shutdown in Switzerland
INTRODUCTION: Many stroke survivors require continuous outpatient rehabilitation therapy to maintain or improve their neurological functioning, independ-ence, and quality of life. In Switzerland and many other countries, the shutdown to contain SARS-CoV-2 infections led to mobility restrictions and a decrease in therapy delivery. This study investigated the impact of the COVID-19 shutdown on stroke survivors' access to therapy, physical activity, functioning and mood.
METHODS: A prospective observational cohort study in stroke subjects. At 4 time-points (before, during, after the shutdown, and at 3-month follow-up), the amount of therapy, physical activities, motor func-tion, anxiety, and depression were assessed.
RESULTS: Thirty-six community-dwelling stroke subjects (median 70 years of age, 10 months post--stroke) were enrolled. Therapy reductions related to the shutdown were reported in 72% of subjects. This decrease was associated with significantly extended sedentary time and minimal deterioration in physical activity during the shutdown. Both parameters improved between reopening and 3-month follow-up. Depressive symptoms increased slightly during the observation period. Patients more frequently report-ed on self-directed training during shutdown.
CONCLUSION: The COVID-19 shutdown had measurable immediate, but no persistent, effects on post--stroke outcomes, except for depression. Importantly, a 2-month reduction in therapy may trigger improvements when therapy is fully re-initiated thereafter
Dynamics of systems with isotropic competing interactions in an external field: a Langevin approach
We study the Langevin dynamics of a ferromagnetic Ginzburg-Landau Hamiltonian
with a competing long-range repulsive term in the presence of an external
magnetic field. The model is analytically solved within the self consistent
Hartree approximation for two different initial conditions: disordered or zero
field cooled (ZFC), and fully magnetized or field cooled (FC). To test the
predictions of the approximation we develop a suitable numerical scheme to
ensure the isotropic nature of the interactions. Both the analytical approach
and the numerical simulations of two-dimensional finite systems confirm a
simple aging scenario at zero temperature and zero field. At zero temperature a
critical field is found below which the initial conditions are relevant
for the long time dynamics of the system. For a logarithmic growth of
modulated domains is found in the numerical simulations but this behavior is
not captured by the analytical approach which predicts a growth law at
A Scaling Hypothesis for Modulated Systems
We propose a scaling hypothesis for pattern-forming systems in which
modulation of the order parameter results from the competition between a
short-ranged interaction and a long-ranged interaction decaying with some power
of the inverse distance. With L being a spatial length characterizing
the modulated phase, all thermodynamic quantities are predicted to scale like
some power of L. The scaling dimensions with respect to L only depend on the
dimensionality of the system d and the exponent \alpha. Scaling predictions are
in agreement with experiments on ultra-thin ferromagnetic films and
computational results. Finally, our scaling hypothesis implies that, for some
range of values \alpha>d, Inverse-Symmetry-Breaking transitions may appear
systematically in the considered class of frustrated systems.Comment: 13 pages, 6 figures, expanded versio
Intrahepatic bile duct strictures after human orthotopic liver transplantation - Recurrence of primary sclerosing cholangitis or unusual presentation of allograft rejection?
One of 55 patients transplanted for sclerosing cholangitis during the cyclosporin-steroid era (March 1980-June 1986) developed intrahepatic biliary strictures in the absence of allograft rejection within the 1st year posttransplantation. Although many causes underlie biliary pathology in the postoperative period (i.e., arterial injury, ischemia, chronic rejection, cholangitis), recurrent disease remains a possibility. © 1988 Springer-Verlag
Recommended from our members
NSLS-II RF BEAM POSITION MONITOR
An internal R&D program has been undertaken at BNL to develop a sub-micron RF Beam Position Monitor (BPM) for the NSLS-II 3rd generation light source that is currently under construction. The BPM R&D program started in August 2009. Successful beam tests were conducted 15 months from the start of the program. The NSLS-II RF BPM has been designed to meet all requirements for the NSLS-II Injection system and Storage Ring. Housing of the RF BPM's in +-0.1 C thermally controlled racks provide sub-micron stabilization without active correction. An active pilot-tone has been incorporated to aid long-term (8hr min) stabilization to 200nm RMS. The development of a sub-micron BPM for the NSLS-II has successfully demonstrated performance and stability. Pilot Tone calibration combiner and RF synthesizer has been implemented and algorithm development is underway. The program is currently on schedule to start production development of 60 Injection BPM's starting in the Fall of 2011. The production of {approx}250 Storage Ring BPM's will overlap the Injection schedule
- …