853 research outputs found

    Advances in electrical high current connections for electrical propulsion systems

    Get PDF
    Many countries strongly support electric propulsion for various fields of transportation, be it people or goods on land, at sea or in the air. Although electric drive systems appear much simpler than (internal) combustion systems, they exhibit their own challenging development tasks. This becomes obvious when an ever-increasing efficiency, performance or production rate is required, just to name a few. The new challenges can be tackled with the help of new electromagnetic manufacturing processes. High speed processes with their well-known unique capabilities offer promising approaches. However, development is required in order to deliver the required performance. High-speed forming with electromagnetic tools allows the production of sharp-edged battery housings. For body panels, sharp edges are mainly a design feature. For batteries, however, sharp edges allow for an almost ideally rectangular housing, enabling a higher energy density. Increases in the range of up to 10 % are achievable. When it comes to packaging, the liquid cooling and heating of battery packs is of equally large importance. The channels for the medium must not consume too much space. The integration of channels inside the aluminium or steel frame of the battery pack is a promising approach. Due to the high welding speeds of up to 500 mm per second at optimum conditions and at the same time the ability to weld aluminium to aluminium or even steel without any loss in strength, electromagnetic pulse welding offers a promising solution. The conduction of high electrical currents with for example the strong demand to save weight and thus use as little material as possible also requires new processes. Electromagnetic pulse welding of aluminium to aluminium and aluminium to copper is well known, investigated and already used in mass production. However, this is suitable for bus bars only. The connection of terminals to cables is mostly done by crimping. Using a pulsed force for crimping improves the compaction and thus the resistance of the joint, especially of cables with large cross sections. This allows for smaller connectors and reduced cable cross sections

    Suitable Design for Electromagnetic Pulse Processes

    Get PDF
    Basic conventional production processes, such as arc welding or forming, are more or less thoroughly investigated, reliable process guidelines have been developed and trained engineers are available. This allows them to be put into use usually fast, thus facilitating a wide application. The usage of electromagnetic pulse processes, on the contrary, still lacks a broad propagation. Despite having a history reaching back several decades, these processes are mostly limited to niche applications. Admittedly, theoretical considerations have been made and various experiments have been carried out. However, when a given joining or forming task needs to be realized with electro-magnetic force, a huge invest is necessary even before the first part is made. This involves the design of the machine, especially of the tool coil, as well as the design of the workpieces to be processed. In industrial environmentsthis challenge is tackled step by step: After the theoretical product concept in close collaboration with the customer, numerical and experimental trials are carried out. In many cases, iterations are necessary and both geometry and process are optimized. The experimental trials can be conducted with universal sheet welding tool coils or tube compression tool coils with custom field shapers. This procedure allows keeping the prototyping costs low, but at the same time provides valid information on the feasibility in general, the requirements to the workpieces, the design of the tool coil and the properties of the pulse generator. Subsequently, the tool coil is designed and manufactured according to the prior findings. The pulse generator as modular component is assembled and adapted to the customer’s requirements. The iterative product and process design is the most important phase of the whole procedure, which is in accordance with good project management. It significantly lowers the risk of an expensive project cancellation during the late steps

    Quantitative Comparison against Experiments Reveals Imperfections in Force Fields’ Descriptions of POPC-Cholesterol Interactions

    Get PDF
    Cholesterol is a central building block in biomembranes, where it induces orientational order, slows diffusion, renders the membrane stiffer, and drives domain formation. Molecular dynamics (MD) simulations have played a crucial role in resolving these effects at the molecular level; yet, it has recently become evident that different MD force fields predict quantitatively different behavior. Although easily neglected, identifying such limitations is increasingly important as the field rapidly progresses toward simulations of complex membranes mimicking the in vivo conditions: pertinent multicomponent simulations must capture accurately the interactions between their fundamental building blocks, such as phospholipids and cholesterol. Here, we define quantitative quality measures for simulations of binary lipid mixtures in membranes against the C–H bond order parameters and lateral diffusion coefficients from NMR spectroscopy as well as the form factors from X-ray scattering. Based on these measures, we perform a systematic evaluation of the ability of commonly used force fields to describe the structure and dynamics of binary mixtures of palmitoyloleoylphosphatidylcholine (POPC) and cholesterol. None of the tested force fields clearly outperforms the others across the tested properties and conditions. Still, the Slipids parameters provide the best overall performance in our tests, especially when dynamic properties are included in the evaluation. The quality evaluation metrics introduced in this work will, particularly, foster future force field development and refinement for multicomponent membranes using automated approaches.publishedVersio

    Quantitative Comparison against Experiments Reveals Imperfections in Force Fields’ Descriptions of POPC–Cholesterol Interactions

    Get PDF
    Cholesterol is a central building block in biomembranes, where it induces orientational order, slows diffusion, renders the membrane stiffer, and drives domain formation. Molecular dynamics (MD) simulations have played a crucial role in resolving these effects at the molecular level; yet, it has recently become evident that different MD force fields predict quantitatively different behavior. Although easily neglected, identifying such limitations is increasingly important as the field rapidly progresses toward simulations of complex membranes mimicking the in vivo conditions: pertinent multicomponent simulations must capture accurately the interactions between their fundamental building blocks, such as phospholipids and cholesterol. Here, we define quantitative quality measures for simulations of binary lipid mixtures in membranes against the C–H bond order parameters and lateral diffusion coefficients from NMR spectroscopy as well as the form factors from X-ray scattering. Based on these measures, we perform a systematic evaluation of the ability of commonly used force fields to describe the structure and dynamics of binary mixtures of palmitoyloleoylphosphatidylcholine (POPC) and cholesterol. None of the tested force fields clearly outperforms the others across the tested properties and conditions. Still, the Slipids parameters provide the best overall performance in our tests, especially when dynamic properties are included in the evaluation. The quality evaluation metrics introduced in this work will, particularly, foster future force field development and refinement for multicomponent membranes using automated approaches

    Expanding bubbles in Orion A: [CII] observations of M42, M43, and NGC 1977

    Full text link
    The Orion Molecular Cloud is the nearest massive-star forming region. Massive stars have profound effects on their environment due to their strong radiation fields and stellar winds. Velocity-resolved observations of the [CII] 158 μm158\,\mu\mathrm{m} fine-structure line allow us to study the kinematics of UV-illuminated gas. Here, we present a square-degree-sized map of [CII] emission from the Orion Nebula complex obtained by the upGREAT instrument onboard SOFIA, covering the entire Orion Nebula (M42) plus M43 and the nebulae NGC 1973, 1975, and 1977. We compare the stellar characteristics of these three regions with the kinematics of the expanding bubbles surrounding them. The bubble blown by the O7V star θ1\theta^1 Ori C in the Orion Nebula expands rapidly, at 13 km s−113\,\mathrm{km\,s^{-1}}. Simple analytical models reproduce the characteristics of the hot interior gas and the neutral shell of this wind-blown bubble and give us an estimate of the expansion time of 0.2 Myr0.2\,\mathrm{Myr}. M43 with the B0.5V star NU Ori also exhibits an expanding bubble structure, with an expansion velocity of 6 km s−16\,\mathrm{km\,s^{-1}}. Comparison with analytical models for the pressure-driven expansion of H\,{\sc ii} regions gives an age estimate of 0.02 Myr0.02\,\mathrm{Myr}. The bubble surrounding NGC 1973, 1975, and 1977 with the central B1V star 42 Orionis expands at 1.5 km s−11.5\,\mathrm{km\,s^{-1}}, likely due to the over-pressurized ionized gas as in the case of M43. We derive an age of 0.4 Myr0.4\,\mathrm{Myr} for this structure. We conclude that the bubble of the Orion Nebula is driven by the mechanical energy input by the strong stellar wind from θ1\theta^1 Ori C, while the bubbles associated with M43 and NGC 1977 are caused by the thermal expansion of the gas ionized by their central later-type massive stars

    Subduction zone forearc serpentinites as incubators for deep microbial life

    No full text
    Serpentinization-fueled systems in the cool, hydrated forearc mantle of subduction zones may provide an environment that supports deep chemolithoautotrophic life. Here, we examine serpentinite clasts expelled from mud volcanoes above the Izu–Bonin–Mariana subduction zone forearc (Pacific Ocean) that contain complex organic matter and nanosized Ni–Fe alloys. Using time-of-flight secondary ion mass spectrometry and Raman spectroscopy, we determined that the organic matter consists of a mixture of aliphatic and aromatic compounds and functional groups such as amides. Although an abiotic or subduction slab-derived fluid origin cannot be excluded, the similarities between the molecular signatures identified in the clasts and those of bacteria-derived biopolymers from other serpentinizing systems hint at the possibility of deep microbial life within the forearc. To test this hypothesis, we coupled the currently known temperature limit for life, 122 °C, with a heat conduction model that predicts a potential depth limit for life within the forearc at ∼10,000 m below the seafloor. This is deeper than the 122 °C isotherm in known oceanic serpentinizing regions and an order of magnitude deeper than the downhole temperature at the serpentinized Atlantis Massif oceanic core complex, Mid-Atlantic Ridge. We suggest that the organic-rich serpentinites may be indicators for microbial life deep within or below the mud volcano. Thus, the hydrated forearc mantle may represent one of Earth’s largest hidden microbial ecosystems. These types of protected ecosystems may have allowed the deep biosphere to thrive, despite violent phases during Earth’s history such as the late heavy bombardment and global mass extinctions

    Naphthoquinones and Anthraquinones from Scent Glands of a Dyspnoid Harvestman, Paranemastoma quadripunctatum

    Get PDF
    Extracts of Paranemastoma quadripunctatum (Opiliones, Dyspnoi, Nemastomatidae) contained seven components, all of which likely originated from the secretion of well-developed prosomal scent glands. The two main components (together accounting for more than 90% of the secretion) were identified as 1,4-naphthoquinone and 6-methyl-1,4-naphthoquinone. The minor components were 1,4-naphthalenediol, two methoxy-naphthoquinones (2-methoxy-1,4-naphthoquinone, and 2-methoxy-6-methyl-1,4-naphthoquinone) and two anthraquinones (2-methyl-9,10-anthraquinone and a dimethyl-9,10-anthraquinone). While some chemical data on scent gland secretions of the other suborders of Opiliones (Cyphophthalmi, palpatorean Eupnoi, and Laniatores) already exist, this is the first report on the scent gland chemistry in the Dyspnoi. Naphthoquinones are known scent gland exudates of Cyphophthalmi and certain Eupnoi, methoxy-naphthoquinones and anthraquinones are new for opilionid scent gland secretions
    • …
    corecore