76 research outputs found

    Topological network alignment uncovers biological function and phylogeny

    Full text link
    Sequence comparison and alignment has had an enormous impact on our understanding of evolution, biology, and disease. Comparison and alignment of biological networks will likely have a similar impact. Existing network alignments use information external to the networks, such as sequence, because no good algorithm for purely topological alignment has yet been devised. In this paper, we present a novel algorithm based solely on network topology, that can be used to align any two networks. We apply it to biological networks to produce by far the most complete topological alignments of biological networks to date. We demonstrate that both species phylogeny and detailed biological function of individual proteins can be extracted from our alignments. Topology-based alignments have the potential to provide a completely new, independent source of phylogenetic information. Our alignment of the protein-protein interaction networks of two very different species--yeast and human--indicate that even distant species share a surprising amount of network topology with each other, suggesting broad similarities in internal cellular wiring across all life on Earth.Comment: Algorithm explained in more details. Additional analysis adde

    Coarse rays

    No full text
    We give some characterizations of geodesic metric spaces coarsely equivalent to the ray R⁺

    Comparative interactomics with Funcoup 2.0

    Get PDF
    FunCoup (http://FunCoup.sbc.su.se) is a database that maintains and visualizes global gene/protein networks of functional coupling that have been constructed by Bayesian integration of diverse high-throughput data. FunCoup achieves high coverage by orthology-based integration of data sources from different model organisms and from different platforms. We here present release 2.0 in which the data sources have been updated and the methodology has been refined. It contains a new data type Genetic Interaction, and three new species: chicken, dog and zebra fish. As FunCoup extensively transfers functional coupling information between species, the new input datasets have considerably improved both coverage and quality of the networks. The number of high-confidence network links has increased dramatically. For instance, the human network has more than eight times as many links above confidence 0.5 as the previous release. FunCoup provides facilities for analysing the conservation of subnetworks in multiple species. We here explain how to do comparative interactomics on the FunCoup website

    An Introductory Guide to Aligning Networks Using SANA, the Simulated Annealing Network Aligner.

    Get PDF
    Sequence alignment has had an enormous impact on our understanding of biology, evolution, and disease. The alignment of biological networks holds similar promise. Biological networks generally model interactions between biomolecules such as proteins, genes, metabolites, or mRNAs. There is strong evidence that the network topology-the "structure" of the network-is correlated with the functions performed, so that network topology can be used to help predict or understand function. However, unlike sequence comparison and alignment-which is an essentially solved problem-network comparison and alignment is an NP-complete problem for which heuristic algorithms must be used.Here we introduce SANA, the Simulated Annealing Network Aligner. SANA is one of many algorithms proposed for the arena of biological network alignment. In the context of global network alignment, SANA stands out for its speed, memory efficiency, ease-of-use, and flexibility in the arena of producing alignments between two or more networks. SANA produces better alignments in minutes on a laptop than most other algorithms can produce in hours or days of CPU time on large server-class machines. We walk the user through how to use SANA for several types of biomolecular networks

    Probabilistic Random Walk Models for Comparative Network Analysis

    Get PDF
    Graph-based systems and data analysis methods have become critical tools in many fields as they can provide an intuitive way of representing and analyzing interactions between variables. Due to the advances in measurement techniques, a massive amount of labeled data that can be represented as nodes on a graph (or network) have been archived in databases. Additionally, novel data without label information have been gradually generated and archived. Labeling and identifying characteristics of novel data is an important first step in utilizing the valuable data in an effective and meaningful way. Comparative network analysis is an effective computational means to identify and predict the properties of the unlabeled data by comparing the similarities and differences between well-studied and less-studied networks. Comparative network analysis aims to identify the matching nodes and conserved subnetworks across multiple networks to enable a prediction of the properties of the nodes in the less-studied networks based on the properties of the matching nodes in the well-studied networks (i.e., transferring knowledge between networks). One of the fundamental and important questions in comparative network analysis is how to accurately estimate node-to-node correspondence as it can be a critical clue in analyzing the similarities and differences between networks. Node correspondence is a comprehensive similarity that integrates various types of similarity measurements in a balanced manner. However, there are several challenges in accurately estimating the node correspondence for large-scale networks. First, the scale of the networks is a critical issue. As networks generally include a large number of nodes, we have to examine an extremely large space and it can pose a computational challenge due to the combinatorial nature of the problem. Furthermore, although there are matching nodes and conserved subnetworks in different networks, structural variations such as node insertions and deletions make it difficult to integrate a topological similarity. In this dissertation, novel probabilistic random walk models are proposed to accurately estimate node-to-node correspondence between networks. First, we propose a context-sensitive random walk (CSRW) model. In the CSRW model, the random walker analyzes the context of the current position of the random walker and it can switch the random movement to either a simultaneous walk on both networks or an individual walk on one of the networks. The context-sensitive nature of the random walker enables the method to effectively integrate different types of similarities by dealing with structural variations. Second, we propose the CUFID (Comparative network analysis Using the steady-state network Flow to IDentify orthologous proteins) model. In the CUFID model, we construct an integrated network by inserting pseudo edges between potential matching nodes in different networks. Then, we design the random walk protocol to transit more frequently between potential matching nodes as their node similarity increases and they have more matching neighboring nodes. We apply the proposed random walk models to comparative network analysis problems: global network alignment and network querying. Through extensive performance evaluations, we demonstrate that the proposed random walk models can accurately estimate node correspondence and these can lead to improved and reliable network comparison results

    Simultaneous Optimization of Both Node and Edge Conservation in Network Alignment via WAVE

    Full text link
    Network alignment can be used to transfer functional knowledge between conserved regions of different networks. Typically, existing methods use a node cost function (NCF) to compute similarity between nodes in different networks and an alignment strategy (AS) to find high-scoring alignments with respect to the total NCF over all aligned nodes (or node conservation). But, they then evaluate quality of their alignments via some other measure that is different than the node conservation measure used to guide the alignment construction process. Typically, one measures the amount of conserved edges, but only after alignments are produced. Hence, a recent attempt aimed to directly maximize the amount of conserved edges while constructing alignments, which improved alignment accuracy. Here, we aim to directly maximize both node and edge conservation during alignment construction to further improve alignment accuracy. For this, we design a novel measure of edge conservation that (unlike existing measures that treat each conserved edge the same) weighs each conserved edge so that edges with highly NCF-similar end nodes are favored. As a result, we introduce a novel AS, Weighted Alignment VotEr (WAVE), which can optimize any measures of node and edge conservation, and which can be used with any NCF or combination of multiple NCFs. Using WAVE on top of established state-of-the-art NCFs leads to superior alignments compared to the existing methods that optimize only node conservation or only edge conservation or that treat each conserved edge the same. And while we evaluate WAVE in the computational biology domain, it is easily applicable in any domain.Comment: 12 pages, 4 figure

    AlignNemo: A Local Network Alignment Method to Integrate Homology and Topology

    Get PDF
    Local network alignment is an important component of the analysis of protein-protein interaction networks that may lead to the identification of evolutionary related complexes. We present AlignNemo, a new algorithm that, given the networks of two organisms, uncovers subnetworks of proteins that relate in biological function and topology of interactions. The discovered conserved subnetworks have a general topology and need not to correspond to specific interaction patterns, so that they more closely fit the models of functional complexes proposed in the literature. The algorithm is able to handle sparse interaction data with an expansion process that at each step explores the local topology of the networks beyond the proteins directly interacting with the current solution. To assess the performance of AlignNemo, we ran a series of benchmarks using statistical measures as well as biological knowledge. Based on reference datasets of protein complexes, AlignNemo shows better performance than other methods in terms of both precision and recall. We show our solutions to be biologically sound using the concept of semantic similarity applied to Gene Ontology vocabularies. The binaries of AlignNemo and supplementary details about the algorithms and the experiments are available at: sourceforge.net/p/alignnemo

    Bridging topological and functional information in protein interaction networks by short loops profiling

    Get PDF
    Protein-protein interaction networks (PPINs) have been employed to identify potential novel interconnections between proteins as well as crucial cellular functions. In this study we identify fundamental principles of PPIN topologies by analysing network motifs of short loops, which are small cyclic interactions of between 3 and 6 proteins. We compared 30 PPINs with corresponding randomised null models and examined the occurrence of common biological functions in loops extracted from a cross-validated high-confidence dataset of 622 human protein complexes. We demonstrate that loops are an intrinsic feature of PPINs and that specific cell functions are predominantly performed by loops of different lengths. Topologically, we find that loops are strongly related to the accuracy of PPINs and define a core of interactions with high resilience. The identification of this core and the analysis of loop composition are promising tools to assess PPIN quality and to uncover possible biases from experimental detection methods. More than 96% of loops share at least one biological function, with enrichment of cellular functions related to mRNA metabolic processing and the cell cycle. Our analyses suggest that these motifs can be used in the design of targeted experiments for functional phenotype detection.This research was supported by the Biotechnology and Biological Sciences Research Council (BB/H018409/1 to AP, ACCC and FF, and BB/J016284/1 to NSBT) and by the Leukaemia & Lymphoma Research (to NSBT and FF). SSC is funded by a Leukaemia & Lymphoma Research Gordon Piller PhD Studentship
    corecore