51 research outputs found

    Frame-dragging effects on magnetic fields near a rotating black hole

    Full text link
    We discuss the role of general relativity frame dragging acting on magnetic field lines near a rotating (Kerr) black hole. Near ergosphere the magnetic structure becomes strongly influenced and magnetic null points can develop. We consider aligned magnetic fields as well as fields inclined with respect to the rotation axis, and the two cases are shown to behave in profoundly different ways. Further, we construct surfaces of equal values of local electric and magnetic intensities, which have not yet been discussed in the full generality of a boosted rotating black hole.Comment: to appear in the proceedings of "The Central Kiloparsec in Galactic Nuclei (AHAR 2011)", Journal of Physics: Conference Series (JPCS), IOP Publishin

    Regular and Chaotic Motion in General Relativity: The Case of a Massive Magnetic Dipole

    Full text link
    Circular motion of particles, dust grains and fluids in the vicinity of compact objects has been investigated as a model for accretion of gaseous and dusty environment. Here we further discuss, within the framework of general relativity, figures of equilibrium of matter under the influence of combined gravitational and large-scale magnetic fields, assuming that the accreted material acquires a small electric charge due to interplay of plasma processes and photoionization. In particular, we employ an exact solution describing the massive magnetic dipole and we identify the regions of stable motion. We also investigate situations when the particle dynamics exhibits the onset of chaos. In order to characterize the measure of chaoticness we employ techniques of Poincar\'e surfaces of section and of recurrence plots.Comment: 11 pages, 6 figures, published in the proceedings of the conference "Relativity and Gravitation: 100 Years after Einstein in Prague" (25. - 29. 6. 2012, Prague

    Transition from Regular to Chaotic Circulation in Magnetized Coronae near Compact Objects

    Full text link
    Accretion onto black holes and compact stars brings material in a zone of strong gravitational and electromagnetic fields. We study dynamical properties of motion of electrically charged particles forming a highly diluted medium (a corona) in the regime of strong gravity and large-scale (ordered) magnetic field. We start our work from a system that allows regular motion, then we focus on the onset of chaos. To this end, we investigate the case of a rotating black hole immersed in a weak, asymptotically uniform magnetic field. We also consider a magnetic star, approximated by the Schwarzschild metric and a test magnetic field of a rotating dipole. These are two model examples of systems permitting energetically bound, off-equatorial motion of matter confined to the halo lobes that encircle the central body. Our approach allows us to address the question of whether the spin parameter of the black hole plays any major role in determining the degree of the chaoticness. To characterize the motion, we construct the Recurrence Plots (RP) and we compare them with Poincar\'e surfaces of section. We describe the Recurrence Plots in terms of the Recurrence Quantification Analysis (RQA), which allows us to identify the transition between different dynamical regimes. We demonstrate that this new technique is able to detect the chaos onset very efficiently, and to provide its quantitative measure. The chaos typically occurs when the conserved energy is raised to a sufficiently high level that allows the particles to traverse the equatorial plane. We find that the role of the black-hole spin in setting the chaos is more complicated than initially thought.Comment: 21 pages, 20 figures, accepted to Ap

    Magnetic layers and neutral points near rotating black hole

    Full text link
    Magnetic layers are narrow regions where the field direction changes sharply. They often occur in the association with neutral points of the magnetic field. We show that an organised field can produce these structures near a rotating black hole, and we identify them as potential sites of magnetic reconnection. To that end we study the field lines affected by the frame-dragging effect, twisting the magnetic structure and changing the position of neutral points. We consider oblique fields in vacuum. We also include the possibility of translational motion of the black hole which may be relevant when the black hole is ejected from the system. The model settings apply to the innermost regions around black holes with the ergosphere dominated by a super-equipartition magnetic field and loaded with a negligible gas content.Comment: 10 pages, 3 figures, Classical and Quantum Gravity accepte

    anti-tick vaccines to prevent tick-borne diseases in Europe

    Get PDF
    Ixodes ricinus transmits bacterial, protozoal and viral pathogens, causing disease and forming an increasing health concern in Europe. ANTIDotE is an European Commission funded consortium of seven institutes, which aims to identify and characterize tick proteins involved in feeding and pathogen transmission. The knowledge gained will be used to develop and evaluate anti- tick vaccines that may prevent multiple human tick-borne diseases. Strategies encompassing anti-tick vaccines to prevent transmission of pathogens to humans, animals or wildlife will be developed with relevant stakeholders with the ultimate aim of reducing the incidence of tick-borne diseases in humans
    • …
    corecore