102 research outputs found

    Data-Driven Induction of Shadowed Sets Based on Grade of Fuzziness

    Get PDF
    We propose a procedure devoted to the induction of a shadowed set through the post-processing of a fuzzy set, which in turn is learned from labeled data. More precisely, the fuzzy set is inferred using a modified support vector clustering algorithm, enriched in order to optimize the fuzziness grade. Finally, the fuzzy set is transformed into a shadowed set through application of an optimal alpha-cut. The procedure is tested on synthetic and real-world datasets

    Identification of fossil worm tubes from Phanerozoic hydrothermal vents and cold seeps

    Get PDF
    One of the main limitations to understanding the evolutionary history of hydrothermal vent and cold seep communities is the identification of tube fossils from ancient deposits. Tube-dwelling annelids are some of the most conspicuous inhabitants of modern vent and seep ecosystems, and ancient vent and seep tubular fossils are usually considered to have been made by annelids. However, the taxonomic affinities of many tube fossils from vents and seeps are contentious, or have remained largely undetermined due to difficulties in identification. In this study, we make a detailed chemical (Fourier-transform infrared spectroscopy and pyrolysis gas-chromatography mass-spectrometry) and morphological assessment of modern annelid tubes from six families, and fossil tubes (seven tube types from the Cenozoic, 12 Mesozoic and four Palaeozoic) from hydrothermal vent and cold seep environments. Characters identified from these investigations were used to explore for the first time the systematics of ancient vent and seep tubes within a cladistic framework. Results reveal details of the compositions and ultrastructures of modern tubes, and also suggest that two types of tubes from ancient vent localities were made by the annelid family Siboglinidae, which often dominates modern vents and seeps. Our results also highlight that several vent and seep tube fossils formerly thought to have been made by annelids cannot be assigned an annelid affiliation with any certainty. The findings overall improve the level of quality control with regard to interpretations of fossil tubes, and, most importantly, suggest that siboglinids likely occupied Mesozoic vents and seeps, greatly increasing the minimum age of the clade relative to earlier molecular estimates

    Bone marrow-specific loss of ABI1 induces myeloproliferative neoplasm with features resembling, human myelofibrosis

    Get PDF
    Although the pathogenesis of primary myelofibrosis (PMF) and other myeloproliferative neoplasms (MPNs) is linked to constitutive activation of the JAK-STAT pathway, JAK inhibitors have neither curative nor MPN-stem cell-eradicating potential, indicating that other targetable mechanisms are contributing to the pathophysiology of MPNs. We previously demonstrated that Abelson interactor 1 (Abi-1), a negative regulator of Abelson kinase 1, functions as a tumor suppressor. Here we present data showing that bone marrow-specific deletion of Abi1 in a novel mouse model leads to development of an MPNlike phenotype resembling human PMF. Abi1 loss resulted in a significant increase in the activity of the Src family kinases (SFKs), STAT3, and NF-κB signaling. We also observed impairment of hematopoietic stem cell self-renewal and fitness, as evidenced in noncompetitive and competitive bone marrow transplant experiments. CD34 + hematopoietic progenitors and granulocytes from patients with PMF showed decreased levels of ABI1 transcript as well as increased activity of SFKs, STAT3, and NF-κB. In aggregate, our data link the loss of Abi-1 function to hyperactive SFKs/STAT3/NF-κB signaling and suggest that this signaling axis may represent a regulatory module involved in the molecular pathophysiology of PMF

    Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis

    Get PDF
    BACKGROUND: Acidithiobacillus ferrooxidans is a gamma-proteobacterium that lives at pH2 and obtains energy by the oxidation of sulfur and iron. It is used in the biomining industry for the recovery of metals and is one of the causative agents of acid mine drainage. Effective tools for the study of its genetics and physiology are not in widespread use and, despite considerable effort, an understanding of its unusual physiology remains at a rudimentary level. Nearly complete genome sequences of A. ferrooxidans are available from two public sources and we have exploited this information to reconstruct aspects of its sulfur metabolism. RESULTS: Two candidate mechanisms for sulfate uptake from the environment were detected but both belong to large paralogous families of membrane transporters and their identification remains tentative. Prospective genes, pathways and regulatory mechanisms were identified that are likely to be involved in the assimilation of sulfate into cysteine and in the formation of Fe-S centers. Genes and regulatory networks were also uncovered that may link sulfur assimilation with nitrogen fixation, hydrogen utilization and sulfur reduction. Potential pathways were identified for sulfation of extracellular metabolites that may possibly be involved in cellular attachment to pyrite, sulfur and other solid substrates. CONCLUSIONS: A bioinformatic analysis of the genome sequence of A. ferrooxidans has revealed candidate genes, metabolic process and control mechanisms potentially involved in aspects of sulfur metabolism. Metabolic modeling provides an important preliminary step in understanding the unusual physiology of this extremophile especially given the severe difficulties involved in its genetic manipulation and biochemical analysis

    The X-ray properties of million solar mass black holes

    Get PDF
    We present new Chandra X-ray observations of seven low-mass black holes (~1e6 Msun) accreting at low Eddington ratios between -2.0<log L/Ledd<-1.5. We compare the X-ray properties of these seven low-mass active galactic nuclei (AGN) to a total of 73 other low-mass AGN in the literature with published Chandra observations (with Eddington ratios extending from -2.0<log L/Ledd<-0.1). We do not find any statistical differences between low- and high-Eddington ratio low-mass AGN in the distributions of their X-ray to ultraviolet luminosity ratios (aox), or in their X-ray spectral shapes. Furthermore, the aox distribution of low-L/Ledd AGN displays an X-ray weak tail that is also observed within high-L/Ledd objects. Our results indicate that between -2<log L/Ledd<-0.1, there is no systematic change in the structure of the accretion flow for active galaxies hosting 1e6 Msun black holes. We examine the accuracy of current bolometric luminosity estimates for our low-L/Ledd objects with new Chandra observations, and it is plausible that their Eddington ratios could be underestimated by up to an order of magnitude. If so, then in analogy with weak emission line quasars, we suggest that accretion from a geometrically thick, radiatively inefficient `slim disk' could explain their diverse properties in aox. Alternatively, if current Eddington ratios are in fact correct (or overestimated), then the X-ray weak tail would imply that there is diversity in disk/corona couplings among individual low-mass objects. Finally, we conclude by noting that the aox distribution for low-mass black holes may have favorable consequences for the epoch of cosmic reionization being driven by AGN.Comment: 14 pages, 6 figures, 6 tables. Accepted for publication in Ap

    Astronomical Distance Determination in the Space Age: Secondary Distance Indicators

    Get PDF
    The formal division of the distance indicators into primary and secondary leads to difficulties in description of methods which can actually be used in two ways: with, and without the support of the other methods for scaling. Thus instead of concentrating on the scaling requirement we concentrate on all methods of distance determination to extragalactic sources which are designated, at least formally, to use for individual sources. Among those, the Supernovae Ia is clearly the leader due to its enormous success in determination of the expansion rate of the Universe. However, new methods are rapidly developing, and there is also a progress in more traditional methods. We give a general overview of the methods but we mostly concentrate on the most recent developments in each field, and future expectations. © 2018, The Author(s)

    Looking for Dependencies in Short Time Series Using Imprecise Statistical Data

    No full text

    Confidence bounds for the reliability of a system from subsystem data

    No full text
    The paper is concerned with the construction of lower bounds for the reliability of a system when statistical data comes from independent tests of its elements. The overview of results known from literature and obtained under the assumption that elements in a system are independent is given. It has been demonstrated using a Monte Carlo experiment that in the case when these elements are dependent and when their dependence is described by Clayton and Gumbel copulas these confidence bounds are not satisfactory. New simple bounds have been proposed which in some practical cases have better properties than the classical ones
    corecore