53 research outputs found
PDGF in gliomas: more than just a growth factor?
Platelet-derived growth factor B (PDGF-B) is a growth factor promoting and regulating cell migration, proliferation, and differentiation, involved in both developmental processes and in maintaining tissue homeostasis under strict regulation. What are the implications of prolonged or uncontrolled growth factor signaling in vivo, and when does a growth factor such as PDGF-B become an oncogene? Under experimental conditions, PDGF-B induces proliferation and causes tumor induction. It is not known whether these tumors are strictly a PDGF-B-driven proliferation of cells or associated with secondary genetic events such as acquired mutations or methylation-mediated gene silencing promoting neoplasia. If PDGF-B-driven tumorigenesis was only cellular proliferation, associated changes in gene expression would thus be correlated with proliferation and not associated with secondary events involved in tumorigenesis and neoplastic transformation such as cycle delay, DNA damage response, and cell death. Changes in gene expression might be expected to be reversible, as is PDGF-B-driven proliferation under normal circumstances. Since PDGF signaling is involved in oligodendrocyte progenitor cell differentiation and maintenance, it is likely that PDGF-B stimulates proliferation of a pool of cells with that phenotype, and inhibition of PDGF-B signaling would result in reduced expression of oligodendrocyte-associated genes. More importantly, inhibition of PDGF signaling would be expected to result in reversion of genes induced by PDGF-B accompanied by a decrease in proliferation. However, if PDGF-B-driven tumorigenesis is more than simply a proliferation of cells, inhibition of PDGF signaling may not reverse gene expression or halt proliferation. These fundamental questions concerning PDGF-B as a potential oncogene have not been resolved
Regulated ATF5 loss-of-function in adult mice blocks formation and causes regression/eradication of gliomas
Glioblastomas are among the most incurable cancers. Our past findings indicated that glioblastoma cells, but not neurons or glia, require the transcription factor ATF5 (activating transcription factor 5) for survival. However, it was unknown whether interference with ATF5 function can prevent or promote regression/eradication of malignant gliomas in vivo. To address this issue, we created a mouse model by crossing a human glial fibrillary acidic protein (GFAP) promoter-tetracycline transactivator mouse line with tetracycline operon-dominant negative-ATF5 (d/n-ATF5) mice to establish bi-transgenic mice. In this model, d/n-ATF5 expression is controlled by doxycycline and the promoter for GFAP, a marker for stem/progenitor cells as well as gliomas. Endogenous gliomas were produced with high efficiency by retroviral delivery of platelet-derived growth factor (PDGF)-B and p53-short hairpin RNA (shRNA) in adult bi-transgenic mice in which expression of d/n-ATF5 was spatially and temporally regulated. Induction of d/n-ATF5 before delivery of PDGF-B/p53-shRNA virus greatly reduced the proportion of mice that formed tumors. Moreover, d/n-ATF5 induction after tumor formation led to regression/eradication of detectable gliomas without evident damage to normal brain cells in all 24 mice assessed
Nociceptors: a phylogenetic view
The ability to react to environmental change is crucial for the survival of an organism and an essential prerequisite is the capacity to detect and respond to aversive stimuli. The importance of having an inbuilt “detect and protect” system is illustrated by the fact that most animals have dedicated sensory afferents which respond to noxious stimuli called nociceptors. Should injury occur there is often sensitization, whereby increased nociceptor sensitivity and/or plasticity of nociceptor-related neural circuits acts as a protection mechanism for the afflicted body part. Studying nociception and nociceptors in different model organisms has demonstrated that there are similarities from invertebrates right through to humans. The development of technology to genetically manipulate organisms, especially mice, has led to an understanding of some of the key molecular players in nociceptor function. This review will focus on what is known about nociceptors throughout the Animalia kingdom and what similarities exist across phyla; especially at the molecular level of ion channels
FUT1 genetic variants impact protein glycosylation of porcine intestinal mucosa
A massive use of antibiotics in industrial pig production is a major cause of the rapidly rising bacterial resistance to antibiotics. An enhanced understanding of infectious diseases and of host-micr obe interactions has the potential to explore alternative ways to improve pig health and reduce the need for antibiotics. Host-microbe interactions depend on host-expressed glycans and microbe-carrying lectins. In this study, a G > A (nucleotide 307) missense mutation in the porcine α1,2fucosyltransferase 1 gene (FUT1), which has been reported to prevent infections by the common porcine enteric pathogen F18 fimbriated Escherichia coli, provided a unique opportunity to study glycan structures potentially involved in intestinal infections. N- and O-Linked glycans of the intestinal mucosa proteins were characterized in detail using LC-MS/MS. Relative abundances of all glycans were determined and compared between four heterozygous pigs (FUT1-307A/G) and four age-matched homozygous pigs from the same 2 litters carrying the missense FUT1 gene constellation (FUT1-307A/A). None of the characterized 48 N-linked glycans was found to be regulated by the FUT1 missense mutation, while 11 of the O-linked glycans showed significantly altered abundances between the two genotypes. The overall abundance of H-antigen carrying structures was decreased fivefold, while H-antigen precursors and sialylated structures were relatively more abundant in pigs with the FUT1 missense mutation. These results provide insight into the role of FUT1 on intestinal glycosylation, improve our understanding of how variation in FUT1 can modulate host-microbe interactions, and suggest that the FUT1 genetic variant may help to improve pig gut health.16 page(s
- …