1,573 research outputs found

    Non-adiabatic Effects in the Dissociation of Oxygen Molecules at the Al(111) Surface

    Full text link
    The measured low initial sticking probability of oxygen molecules at the Al(111) surface that had puzzled the field for many years was recently explained in a non-adiabatic picture invoking spin-selection rules [J. Behler et al., Phys. Rev. Lett. 94, 036104 (2005)]. These selection rules tend to conserve the initial spin-triplet character of the free O2 molecule during the molecule's approach to the surface. A new locally-constrained density-functional theory approach gave access to the corresponding potential-energy surface (PES) seen by such an impinging spin-triplet molecule and indicated barriers to dissociation which reduce the sticking probability. Here, we further substantiate this non-adiabatic picture by providing a detailed account of the employed approach. Building on the previous work, we focus in particular on inaccuracies in present-day exchange-correlation functionals. Our analysis shows that small quantitative differences in the spin-triplet constrained PES obtained with different gradient-corrected functionals have a noticeable effect on the lowest kinetic energy part of the resulting sticking curve.Comment: 17 pages including 11 figures; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.htm

    Production of long-lived atomic vapor inside high-density buffer gas

    Full text link
    Atomic vapor of four different paramagnetic species: gold, silver, lithium, and rubidium, is produced and studied inside several buffer gases: helium, nitrogen, neon, and argon. The paramagnetic atoms are injected into the buffer gas using laser ablation. Wires with diameters 25 μ\mum, 50 μ\mum, and 100 μ\mum are used as ablation targets for gold and silver, bulk targets are used for lithium and rubidium. The buffer gas cools and confines the ablated atoms, slowing down their transport to the cell walls. Buffer gas temperatures between 20 K and 295 K, and densities between 101610^{16} cm3^{-3} and 2×10192\times10^{19} cm3^{-3} are explored. Peak paramagnetic atom densities of 101110^{11} cm3^{-3} are routinely achieved. The longest observed paramagnetic vapor density decay times are 110 ms for silver at 20 K and 4 ms for lithium at 32 K. The candidates for the principal paramagnetic-atom loss mechanism are impurities in the buffer gas, dimer formation and atom loss on sputtered clusters.Comment: Some minor editorial changes and corrections, added reference

    Crystal structure of the wide-spectrum binuclear zinc β-lactamase from Bacteroides fragilis

    Get PDF
    AbstractBackground: The metallo-β-lactamase from Bacteroides fragilis hydrolyzes a wide range of β-lactam antibiotics, and is not clinically susceptible to any known β-lactamase inhibitors. B. fragilis is associated with post-surgery hospital infections, and there has been a recent report of plasmid-mediated dissemination of the enzyme. Effective inhibitors are therefore urgently needed. Knowledge of the three-dimensional structure will aid in the drug design effort.Results The crystal structure of the enzyme has been determined by using multiwavelength anomalous diffraction at the zinc absorption edge and refined to 1.85 Å resolution. The structure is a four-layer α/β/β/α molecule. The active site, found at the edge of the β sandwich, contains a binuclear zinc center with several novel features. One zinc is tetrahedrally coordinated, the other has a trigonal bipyramidal coordination; a water/hydroxide molecule serves as a ligand for both metals. The residues that coordinate the two zincs are invariant in all metallo-β-lactamases that have been sequenced, except for two conservative replacements. Despite the existence of the pattern for binuclear zinc binding, the reported structure of the Bacillus cereus enzyme contains only a single zinc.Conclusion Structural analysis indicates that affinity for the penta-coordinated zinc can be modulated by neighboring residues, perhaps explaining the absence of the second zinc in the B. cereus structure. Models of bound substrates suggest that the active-site channel can accommodate a wide variety of β-lactams. We propose that the zinc cluster prepares an hydroxide, probably the hydroxide that ligates both zincs, for nucleophilic attack on the carbonyl carbon atom of the β-lactam. The resulting negatively charged tetrahedral intermediate implicated in catalysis is stabilized by an oxyanion hole formed by the side chain of the invariant Asn193 and the tetrahedral zinc

    Theoretical study of molecular electronic excitations and optical transitions of C60

    Full text link
    We report results on ab initio calculations of excited states of the fullerene molecule by using configuration interaction (CI) approach with singly excited determinants (SCI). We have used both the experimental geometry and the one optimized by the density functional method and worked with basis sets at the cc-pVTZ and aug-cc-pVTZ level. Contrary to the early SCI semiempirical calculations, we find that two lowest 1T1u1Ag^1 T_{1u} \leftarrow {}^1 A_g electron optical lines are situated at relatively high energies of ~5.8 eV (214 nm) and ~6.3 eV (197 nm). These two lines originate from two 1T1u1Ag^1 T_{1u} \leftarrow {}^1 A_g transitions: from HOMO to (LUMO+1) (6hu3t1g6h_u \to 3t_{1g}) and from (HOMO--1) to LUMO (10hg7t1u10h_g \to 7t_{1u}). The lowest molecular excitation, which is the 13T2g1 ^3 T_{2g} level, is found at ~2.5 eV. Inclusion of doubly excited determinants (SDCI) leads only to minor corrections to this picture. We discuss possible assignment of absorption bands at energies smaller than 5.8 eV (or λ\lambda larger than 214 nm).Comment: 6 pages, 1 figure, 9 Table

    On the mutual polarization of two He-4 atoms

    Full text link
    We propose a simple method based on the standard quantum-mechanical perturbation theory to calculate the mutual polarization of two atoms He^4.Comment: 9 pages, 1 table; the article is revised and the calculation is essentially refined; v4: final version, the Introduction is delete

    Resonant ion-pair formation in electron recombination with HF^+

    Full text link
    The cross section for resonant ion-pair formation in the collision of low-energy electrons with HF^+ is calculated by the solution of the time-dependent Schrodinger equation with multiple coupled states using a wave packet method. A diabatization procedure is proposed to obtain the electronic couplings between quasidiabatic potentials of ^1Sigma^+ symmetry for HF. By including these couplings between the neutral states, the cross section for ion-pair formation increases with about two orders of magnitude compared with the cross section for direct dissociation. Qualitative agreement with the measured cross section is obtained. The oscillations in the calculated cross section are analyzed. The cross section for ion-pair formation in electron recombination with DF^+ is calculated to determine the effect of isotopic substitution.Comment: 12 pages, 12 figure

    Ultralow-power local laser control of the dimer density in alkali-metal vapors through photodesorption

    Full text link
    Ultralow-power diode-laser radiation is employed to induce photodesorption of cesium from a partially transparent thin-film cesium adsorbate on a solid surface. Using resonant Raman spectroscopy, we demonstrate that this photodesorption process enables an accurate local optical control of the density of dimer molecules in alkali-metal vapors.Comment: 4 pages, 4 figure

    Strong fragmentation of low-energy electromagnetic excitation strength in 117^{117}Sn

    Full text link
    Results of nuclear resonance fluorescence experiments on 117^{117}Sn are reported. More than 50 γ\gamma transitions with Eγ<4E_{\gamma} < 4 MeV were detected indicating a strong fragmentation of the electromagnetic excitation strength. For the first time microscopic calculations making use of a complete configuration space for low-lying states are performed in heavy odd-mass spherical nuclei. The theoretical predictions are in good agreement with the data. It is concluded that although the E1 transitions are the strongest ones also M1 and E2 decays contribute substantially to the observed spectra. In contrast to the neighboring even 116124^{116-124}Sn, in 117^{117}Sn the 11^- component of the two-phonon [21+31][2^+_1 \otimes 3^-_1] quintuplet built on top of the 1/2+^+ ground state is proved to be strongly fragmented.Comment: 4 pages, 3 figure

    Using Molecules to Measure Nuclear Spin-Dependent Parity Violation

    Full text link
    Nuclear spin-dependent parity violation arises from weak interactions between electrons and nucleons, and from nuclear anapole moments. We outline a method to measure such effects, using a Stark-interference technique to determine the mixing between opposite-parity rotational/hyperfine levels of ground-state molecules. The technique is applicable to nuclei over a wide range of atomic number, in diatomic species that are theoretically tractable for interpretation. This should provide data on anapole moments of many nuclei, and on previously unmeasured neutral weak couplings
    corecore