3,305 research outputs found
Hiding its age: the case for a younger bulge
The determination of the age of the bulge has led to two contradictory
results. On the one side, the color-magnitude diagrams in different bulge
fields seem to indicate a uniformly old (10 Gyr) population. On the other
side, individual ages derived from dwarfs observed through microlensing events
seem to indicate a large spread, from 2 to 13 Gyr. Because the
bulge is now recognised as being mainly a boxy peanut-shaped bar, it is
suggested that disk stars are one of its main constituents, and therefore also
stars with ages significantly younger than 10 Gyr. Other arguments as well
point to the fact that the bulge cannot be exclusively old, and in particular
cannot be a burst population, as it is usually expected if the bulge was the
fossil remnant of a merger phase in the early Galaxy. In the present study, we
show that given the range of metallicities observed in the bulge, a uniformly
old population would be reflected into a significant spread in color at the
turn-off which is not observed. Inversely, we demonstrate that the correlation
between age and metallicity expected to hold for the inner disk would conspire
to form a color-magnitude diagram with a remarkably small spread in color, thus
mimicking the color-magnitude diagram of a uniformly old population. If stars
younger than 10 Gyr are part of the bulge, as must be the case if the bulge has
been mainly formed through dynamical instabilities in the disk, then a very
small spread at the turn-off is expected, as seen in the observations.Comment: 11 pages, 11 figures. Accepted for publication in A&
Signatures of radial migration in barred galaxies: Azimuthal variations in the metallicity distribution of old stars
By means of N-body simulations, we show that radial migration in galaxy
disks, induced by bar and spiral arms, leads to significant azimuthal
variations in the metallicity distribution of old stars at a given distance
from the galaxy center. Metals do not show an axisymmetric distribution during
phases of strong migration. Azimuthal variations are visible during the whole
phase of strong bar phase, and tend to disappear as the effect of radial
migration diminishes, together with a reduction in the bar strength. These
results suggest that the presence of inhomogeneities in the metallicity
distribution of old stars in a galaxy disk can be a probe of ongoing strong
migration. Such signatures may be detected in the Milky Way by Gaia (and
complementary spectroscopic data), as well as in external galaxies, by IFU
surveys like CALIFA and ATLAS3D. Mixing - defined as the tendency toward a
homogeneous, azimuthally symmetric, stellar distribution in the disk - and
migration turns out to be two distinct processes, the effects of mixing
starting to be visible when strong migration is over.Comment: 8 pages, 10 figures, accepted for publication on Astronomy and
Astrophysic
Variational study of the antiferromagnetic insulating phase of V2O3 based on Nth order Muffin-Tin-Orbitals
Motivated by recent results of th order muffin-tin orbital (NMTO)
implementation of the density functional theory (DFT), we re-examine
low-temperature ground-state properties of the anti-ferromagnetic insulating
phase of vanadium sesquioxide VO. The hopping matrix elements obtained
by the NMTO-downfolding procedure differ significantly from those previously
obtained in electronic structure calculations and imply that the in-plane
hopping integrals are as important as the out-of-plane ones. We use the NMTO
hopping matrix elements as input and perform a variational study of the ground
state. We show that the formation of stable molecules throughout the crystal is
not favorable in this case and that the experimentally observed magnetic
structure can still be obtained in the atomic variational regime. However the
resulting ground state (two electrons occupying the degenerate
doublet) is in contrast with many well established experimental observations.
We discuss the implications of this finding in the light of the non-local
electronic correlations certainly present in this compound.Comment: 7 pages, 2 figure
When the Milky Way turned off the lights: APOGEE provides evidence of star formation quenching in our Galaxy
Quenching, the cessation of star formation, is one of the most significant
events in the life cycle of galaxies. We show here the first evidence that the
Milky Way experienced a generalised quenching of its star formation at the end
of its thick disk formation 9 Gyr ago. Elemental abundances of stars
studied as part of the APOGEE survey reveal indeed that in less than 2
Gyr the star formation rate in our Galaxy dropped by an order-of-magnitude.
Because of the tight correlation between age and alpha abundance, this event
reflects in the dearth of stars along the inner disk sequence in the
[Fe/H]-[/Fe] plane. Before this phase, which lasted about 1.5 Gyr, the
Milky Way was actively forming stars. Afterwards, the star formation resumed at
a much lower level to form the thin disk. These events are very well matched by
the latest observation of MW-type progenitors at high redshifts. In late type
galaxies, quenching is believed to be related to a long and secular exhaustion
of gas. In our Galaxy, it occurred on a much shorter time scale, while the
chemical continuity before and after the quenching indicates that it was not
due to the exhaustion of the gas. While quenching is generally associated with
spheroids, our results show that it also occurs in galaxies like the Milky Way,
possibly when they are undergoing a morphological transition from thick to thin
disks. Given the demographics of late type galaxies in the local universe, in
which classical bulges are rare, we suggest further that this may hold true
generally in galaxies with mass lower than or approximately , where
quenching could be directly a consequence of thick disk formation. We emphasize
that the quenching phase in the Milky Way could be contemporaneous with, and
related to, the formation of the bar. We sketch a scenario on how a strong bar
may inhibit star formation.Comment: 17 pages, 8 figures. Published versio
Limits on the use of cobalt sulfide as anode of p-type dye-sensitized solar cells
Thin films of cobalt sulfide (CoS) of thickness l < 10m have been employed as anodes of p-type dye-sensitized solar cells (p-DSCs) when P1-sensitized nickel oxide (NiO) was the photoactive cathode and /I - constituted the redox mediator. In the role of counter electrode for p-DSCs, CoS was preferred over traditional platinized fluorine-doped indium oxide (Pt-FTO) due to the lower cost of the starting materials (Co salts) and the easier procedure of deposition onto large area substrates. The latter process was carried out via direct precipitation of CoS from aqueous solutions. The photoconversion efficiency (η) of the corresponding device was 0.07%. This value is about 35% less than the efficiency that is obtained with the analogous p-DSC employing the Pt-FTO anode (η = 0.11). Unlike p-DSCs based on Pt-FTO anodes, the photoelectrochemical cells employing CoS electrodes showed that this anodic material was not able to sustain the photocurrent densities generated by P1-sensitized NiO at a given photopotential. Illumination of the p-DSCs with CoS anodes and P1-sensitized NiO cathodes actually induced the reverse bias of the photoelectrochemical cell with CoS behaving like a p-type semiconductor with no degeneracy. © 2017 IOP Publishing Ltd
Complexity of Products: The Effect of Data Regularisation
Among several developments, the field of Economic Complexity (EC) has notably seen the introduction of two new techniques. One is the Bootstrapped Selective Predictability Scheme (SPSb), which can provide quantitative forecasts of the Gross Domestic Product of countries. The other, Hidden Markov Model (HMM) regularisation, denoises the datasets typically employed in the literature. We contribute to EC along three different directions. First, we prove the convergence of the SPSb algorithm to a well-known statistical learning technique known as Nadaraya-Watson Kernel regression. The latter has significantly lower time complexity, produces deterministic results, and it is interchangeable with SPSb for the purpose of making predictions. Second, we study the effects of HMM regularization on the Product Complexity and logPRODY metrics, for which a model of time evolution has been recently proposed. We find confirmation for the original interpretation of the logPRODY model as describing the change in the global market structure of products with new insights allowing a new interpretation of the Complexity measure, for which we propose a modification. Third, we explore new effects of regularisation on the data. We find that it reduces noise, and observe for the first time that it increases nestedness in the export network adjacency matrix
A \u3cem\u3eChandra\u3c/em\u3e Survey of Supermassive Black Holes with Dynamical Mass Measurements
We present Chandra observations of 12 galaxies that contain supermassive black holes (SMBHs) with dynamical mass measurements. Each galaxy was observed for 30 ks and resulted in a total of 68 point-source detections in the target galaxies including SMBH sources, ultraluminous X-ray sources (ULXs), and extragalactic X-ray binaries. Based on our fits of the X-ray spectra, we report fluxes, luminosities, Eddington ratios, and slope of the power-law spectrum. Normalized to the Eddington luminosity, the 2-10 keV band X-ray luminosities of the SMBH sources range from 10-8 to 10-6, and the power-law slopes are centered at ~2 with a slight trend toward steeper (softer) slopes at smaller Eddington fractions, implying a change in the physical processes responsible for their emission at low accretion rates. We find 20 ULX candidates, of which 6 are likely (\u3e90% chance) to be true ULXs. The most promising ULX candidate has an isotropic luminosity in the 0.3-10 keV band of 1.0+0.6 - 0.3 × 1040 erg s-1
A \u3cem\u3eChandra\u3c/em\u3e Survey of Supermassive Black Holes with Dynamical Mass Measurements
We present Chandra observations of 12 galaxies that contain supermassive black holes (SMBHs) with dynamical mass measurements. Each galaxy was observed for 30 ks and resulted in a total of 68 point-source detections in the target galaxies including SMBH sources, ultraluminous X-ray sources (ULXs), and extragalactic X-ray binaries. Based on our fits of the X-ray spectra, we report fluxes, luminosities, Eddington ratios, and slope of the power-law spectrum. Normalized to the Eddington luminosity, the 2-10 keV band X-ray luminosities of the SMBH sources range from 10-8 to 10-6, and the power-law slopes are centered at ~2 with a slight trend toward steeper (softer) slopes at smaller Eddington fractions, implying a change in the physical processes responsible for their emission at low accretion rates. We find 20 ULX candidates, of which 6 are likely (\u3e90% chance) to be true ULXs. The most promising ULX candidate has an isotropic luminosity in the 0.3-10 keV band of 1.0+0.6 - 0.3 × 1040 erg s-1
Reconstructing the star formation history of the Milky Way disc(s) from chemical abundances
We develop a chemical evolution model in order to study the star formation
history of the Milky Way. Our model assumes that the Milky Way is formed from a
closed box-like system in the inner regions, while the outer parts of the disc
experience some accretion. Unlike the usual procedure, we do not fix the star
formation prescription (e.g. Kennicutt law) in order to reproduce the chemical
abundance trends. Instead, we fit the abundance trends with age in order to
recover the star formation history of the Galaxy. Our method enables one to
recover with unprecedented accuracy the star formation history of the Milky Way
in the first Gyrs, in both the inner (R9-10kpc) discs as
sampled in the solar vicinity. We show that, in the inner disc, half of the
stellar mass formed during the thick disc phase, in the first 4-5 Gyr. This
phase was followed by a significant dip in the star formation activity (at 8-9
Gyr) and a period of roughly constant lower level star formation for the
remaining 8 Gyr. The thick disc phase has produced as many metals in 4 Gyr as
the thin disc in the remaining 8 Gyr. Our results suggest that a closed box
model is able to fit all the available constraints in the inner disc. A closed
box system is qualitatively equivalent to a regime where the accretion rate, at
high redshift, maintains a high gas fraction in the inner disc. In such
conditions, the SFR is mainly governed by the high turbulence of the ISM. By
z~1 it is possible that most of the accretion takes place in the outer disc,
while the star formation activity in the inner disc is mostly sustained by the
gas not consumed during the thick disc phase, and the continuous ejecta from
earlier generations of stars. The outer disc follows a star formation history
very similar to that of the inner disc, although initiated at z~2, about 2 Gyr
before the onset of the thin disc formation in the inner disc.Comment: 30 pages, 18 figures, 3 tables, accepted by A&A - minor stylistic
change
- …