3,305 research outputs found

    Hiding its age: the case for a younger bulge

    Full text link
    The determination of the age of the bulge has led to two contradictory results. On the one side, the color-magnitude diagrams in different bulge fields seem to indicate a uniformly old (>>10 Gyr) population. On the other side, individual ages derived from dwarfs observed through microlensing events seem to indicate a large spread, from \sim 2 to \sim 13 Gyr. Because the bulge is now recognised as being mainly a boxy peanut-shaped bar, it is suggested that disk stars are one of its main constituents, and therefore also stars with ages significantly younger than 10 Gyr. Other arguments as well point to the fact that the bulge cannot be exclusively old, and in particular cannot be a burst population, as it is usually expected if the bulge was the fossil remnant of a merger phase in the early Galaxy. In the present study, we show that given the range of metallicities observed in the bulge, a uniformly old population would be reflected into a significant spread in color at the turn-off which is not observed. Inversely, we demonstrate that the correlation between age and metallicity expected to hold for the inner disk would conspire to form a color-magnitude diagram with a remarkably small spread in color, thus mimicking the color-magnitude diagram of a uniformly old population. If stars younger than 10 Gyr are part of the bulge, as must be the case if the bulge has been mainly formed through dynamical instabilities in the disk, then a very small spread at the turn-off is expected, as seen in the observations.Comment: 11 pages, 11 figures. Accepted for publication in A&

    Signatures of radial migration in barred galaxies: Azimuthal variations in the metallicity distribution of old stars

    Full text link
    By means of N-body simulations, we show that radial migration in galaxy disks, induced by bar and spiral arms, leads to significant azimuthal variations in the metallicity distribution of old stars at a given distance from the galaxy center. Metals do not show an axisymmetric distribution during phases of strong migration. Azimuthal variations are visible during the whole phase of strong bar phase, and tend to disappear as the effect of radial migration diminishes, together with a reduction in the bar strength. These results suggest that the presence of inhomogeneities in the metallicity distribution of old stars in a galaxy disk can be a probe of ongoing strong migration. Such signatures may be detected in the Milky Way by Gaia (and complementary spectroscopic data), as well as in external galaxies, by IFU surveys like CALIFA and ATLAS3D. Mixing - defined as the tendency toward a homogeneous, azimuthally symmetric, stellar distribution in the disk - and migration turns out to be two distinct processes, the effects of mixing starting to be visible when strong migration is over.Comment: 8 pages, 10 figures, accepted for publication on Astronomy and Astrophysic

    Variational study of the antiferromagnetic insulating phase of V2O3 based on Nth order Muffin-Tin-Orbitals

    Full text link
    Motivated by recent results of NNth order muffin-tin orbital (NMTO) implementation of the density functional theory (DFT), we re-examine low-temperature ground-state properties of the anti-ferromagnetic insulating phase of vanadium sesquioxide V2_2O3_3. The hopping matrix elements obtained by the NMTO-downfolding procedure differ significantly from those previously obtained in electronic structure calculations and imply that the in-plane hopping integrals are as important as the out-of-plane ones. We use the NMTO hopping matrix elements as input and perform a variational study of the ground state. We show that the formation of stable molecules throughout the crystal is not favorable in this case and that the experimentally observed magnetic structure can still be obtained in the atomic variational regime. However the resulting ground state (two t2gt_{2g} electrons occupying the degenerate ege_g doublet) is in contrast with many well established experimental observations. We discuss the implications of this finding in the light of the non-local electronic correlations certainly present in this compound.Comment: 7 pages, 2 figure

    When the Milky Way turned off the lights: APOGEE provides evidence of star formation quenching in our Galaxy

    Full text link
    Quenching, the cessation of star formation, is one of the most significant events in the life cycle of galaxies. We show here the first evidence that the Milky Way experienced a generalised quenching of its star formation at the end of its thick disk formation \sim9 Gyr ago. Elemental abundances of stars studied as part of the APOGEE survey reveal indeed that in less than \sim2 Gyr the star formation rate in our Galaxy dropped by an order-of-magnitude. Because of the tight correlation between age and alpha abundance, this event reflects in the dearth of stars along the inner disk sequence in the [Fe/H]-[α\alpha/Fe] plane. Before this phase, which lasted about 1.5 Gyr, the Milky Way was actively forming stars. Afterwards, the star formation resumed at a much lower level to form the thin disk. These events are very well matched by the latest observation of MW-type progenitors at high redshifts. In late type galaxies, quenching is believed to be related to a long and secular exhaustion of gas. In our Galaxy, it occurred on a much shorter time scale, while the chemical continuity before and after the quenching indicates that it was not due to the exhaustion of the gas. While quenching is generally associated with spheroids, our results show that it also occurs in galaxies like the Milky Way, possibly when they are undergoing a morphological transition from thick to thin disks. Given the demographics of late type galaxies in the local universe, in which classical bulges are rare, we suggest further that this may hold true generally in galaxies with mass lower than or approximately MM^*, where quenching could be directly a consequence of thick disk formation. We emphasize that the quenching phase in the Milky Way could be contemporaneous with, and related to, the formation of the bar. We sketch a scenario on how a strong bar may inhibit star formation.Comment: 17 pages, 8 figures. Published versio

    Limits on the use of cobalt sulfide as anode of p-type dye-sensitized solar cells

    Get PDF
    Thin films of cobalt sulfide (CoS) of thickness l < 10m have been employed as anodes of p-type dye-sensitized solar cells (p-DSCs) when P1-sensitized nickel oxide (NiO) was the photoactive cathode and /I - constituted the redox mediator. In the role of counter electrode for p-DSCs, CoS was preferred over traditional platinized fluorine-doped indium oxide (Pt-FTO) due to the lower cost of the starting materials (Co salts) and the easier procedure of deposition onto large area substrates. The latter process was carried out via direct precipitation of CoS from aqueous solutions. The photoconversion efficiency (η) of the corresponding device was 0.07%. This value is about 35% less than the efficiency that is obtained with the analogous p-DSC employing the Pt-FTO anode (η = 0.11). Unlike p-DSCs based on Pt-FTO anodes, the photoelectrochemical cells employing CoS electrodes showed that this anodic material was not able to sustain the photocurrent densities generated by P1-sensitized NiO at a given photopotential. Illumination of the p-DSCs with CoS anodes and P1-sensitized NiO cathodes actually induced the reverse bias of the photoelectrochemical cell with CoS behaving like a p-type semiconductor with no degeneracy. © 2017 IOP Publishing Ltd

    Complexity of Products: The Effect of Data Regularisation

    Get PDF
    Among several developments, the field of Economic Complexity (EC) has notably seen the introduction of two new techniques. One is the Bootstrapped Selective Predictability Scheme (SPSb), which can provide quantitative forecasts of the Gross Domestic Product of countries. The other, Hidden Markov Model (HMM) regularisation, denoises the datasets typically employed in the literature. We contribute to EC along three different directions. First, we prove the convergence of the SPSb algorithm to a well-known statistical learning technique known as Nadaraya-Watson Kernel regression. The latter has significantly lower time complexity, produces deterministic results, and it is interchangeable with SPSb for the purpose of making predictions. Second, we study the effects of HMM regularization on the Product Complexity and logPRODY metrics, for which a model of time evolution has been recently proposed. We find confirmation for the original interpretation of the logPRODY model as describing the change in the global market structure of products with new insights allowing a new interpretation of the Complexity measure, for which we propose a modification. Third, we explore new effects of regularisation on the data. We find that it reduces noise, and observe for the first time that it increases nestedness in the export network adjacency matrix

    A \u3cem\u3eChandra\u3c/em\u3e Survey of Supermassive Black Holes with Dynamical Mass Measurements

    Get PDF
    We present Chandra observations of 12 galaxies that contain supermassive black holes (SMBHs) with dynamical mass measurements. Each galaxy was observed for 30 ks and resulted in a total of 68 point-source detections in the target galaxies including SMBH sources, ultraluminous X-ray sources (ULXs), and extragalactic X-ray binaries. Based on our fits of the X-ray spectra, we report fluxes, luminosities, Eddington ratios, and slope of the power-law spectrum. Normalized to the Eddington luminosity, the 2-10 keV band X-ray luminosities of the SMBH sources range from 10-8 to 10-6, and the power-law slopes are centered at ~2 with a slight trend toward steeper (softer) slopes at smaller Eddington fractions, implying a change in the physical processes responsible for their emission at low accretion rates. We find 20 ULX candidates, of which 6 are likely (\u3e90% chance) to be true ULXs. The most promising ULX candidate has an isotropic luminosity in the 0.3-10 keV band of 1.0+0.6 - 0.3 × 1040 erg s-1

    A \u3cem\u3eChandra\u3c/em\u3e Survey of Supermassive Black Holes with Dynamical Mass Measurements

    Get PDF
    We present Chandra observations of 12 galaxies that contain supermassive black holes (SMBHs) with dynamical mass measurements. Each galaxy was observed for 30 ks and resulted in a total of 68 point-source detections in the target galaxies including SMBH sources, ultraluminous X-ray sources (ULXs), and extragalactic X-ray binaries. Based on our fits of the X-ray spectra, we report fluxes, luminosities, Eddington ratios, and slope of the power-law spectrum. Normalized to the Eddington luminosity, the 2-10 keV band X-ray luminosities of the SMBH sources range from 10-8 to 10-6, and the power-law slopes are centered at ~2 with a slight trend toward steeper (softer) slopes at smaller Eddington fractions, implying a change in the physical processes responsible for their emission at low accretion rates. We find 20 ULX candidates, of which 6 are likely (\u3e90% chance) to be true ULXs. The most promising ULX candidate has an isotropic luminosity in the 0.3-10 keV band of 1.0+0.6 - 0.3 × 1040 erg s-1

    Reconstructing the star formation history of the Milky Way disc(s) from chemical abundances

    Full text link
    We develop a chemical evolution model in order to study the star formation history of the Milky Way. Our model assumes that the Milky Way is formed from a closed box-like system in the inner regions, while the outer parts of the disc experience some accretion. Unlike the usual procedure, we do not fix the star formation prescription (e.g. Kennicutt law) in order to reproduce the chemical abundance trends. Instead, we fit the abundance trends with age in order to recover the star formation history of the Galaxy. Our method enables one to recover with unprecedented accuracy the star formation history of the Milky Way in the first Gyrs, in both the inner (R9-10kpc) discs as sampled in the solar vicinity. We show that, in the inner disc, half of the stellar mass formed during the thick disc phase, in the first 4-5 Gyr. This phase was followed by a significant dip in the star formation activity (at 8-9 Gyr) and a period of roughly constant lower level star formation for the remaining 8 Gyr. The thick disc phase has produced as many metals in 4 Gyr as the thin disc in the remaining 8 Gyr. Our results suggest that a closed box model is able to fit all the available constraints in the inner disc. A closed box system is qualitatively equivalent to a regime where the accretion rate, at high redshift, maintains a high gas fraction in the inner disc. In such conditions, the SFR is mainly governed by the high turbulence of the ISM. By z~1 it is possible that most of the accretion takes place in the outer disc, while the star formation activity in the inner disc is mostly sustained by the gas not consumed during the thick disc phase, and the continuous ejecta from earlier generations of stars. The outer disc follows a star formation history very similar to that of the inner disc, although initiated at z~2, about 2 Gyr before the onset of the thin disc formation in the inner disc.Comment: 30 pages, 18 figures, 3 tables, accepted by A&A - minor stylistic change
    corecore